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Chapter 1

Preliminaries

In this short preliminary chapter, we will recall some basic facts about sets that will be fre-
quently used and introduce the induction principle.

1.1 Sets

A set is any well-defined collection of objects. Each object in a set is called an element (or
member) of the set and the notation a ∈ A reads “the element a belongs to the set A”. A set
A is a subset of a set B, denoted A ⊆ B, if every element of A is also an element of B. The
empty set, denoted by ∅, is the set that contains no elements. Clearly, ∅ is a subset of any
set.

There are many acceptable ways to assert the contents of a set. For example, a set can
be described by an explicit list: A = {1, 2, 3, 4, 5, 6}, B = {H,T} C = {1, 1

2 ,
1
3 ,

1
4 , . . .}. Sets

can also be described in words. For instance, we can define the set E to be the collection of
even natural numbers. Sometimes it is more efficient to provide a kind of rule or algorithm
for determining the elements of a set. As an example, let C = {(x, y) ∈ R2 : x2 + y2 = 1}.
Clearly, C is nothing but the set of points on the circle with center the origin and radius 1.

Two sets A and B are equal, denoted A = B, if they contain exactly the same elements.
In other words, A = B means that A ⊆ B and A ⊇ B. Given a set A, its power set is the set
whose elements are the subsets of A. Sometimes the power set of A is denoted by 2A, for a
reason to be discussed in the next chapter.

Example 1.1.1. Let A = {∗, ◦}. The power set of A is then the set {∅, {∗}, {◦}, {∗, ◦}}.

It is often the case that all sets we are interested in are subsets of one particular set X,
which we call the universe. Let A and B be two subsets of X. The complement of B in A,
denoted A \B, is the set of elements of X which belong to A but not to B. When the set X is
clear from the context, we write Ac := X \A and refer to Ac simply as the complement of A.
The intersection of A and B is the set of elements of X which belong to both A and B. The
sets A and B are disjoint if A ∩B = ∅. The union of A and B is set of elements of X which
belong to A or to B or to both.

Remark 1.1.2. It is useful to represent graphically the relationships between sets using Venn
diagrams. Each set is represented by a region of the plane enclosed by a curve. Such dia-
grams cannot be used to prove theorems. However, providing intuition about the possible
relationships between sets, they do suggest what statements about sets might be provable.
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CHAPTER 1. PRELIMINARIES 3

Example 1.1.3. Let our universe be X = {1, 2, 3, 4, 5}, and let A = {1, 2, 3} and B =
{1, 3, 5}. Then A ∩B = {1, 3}, A ∪B = {1, 2, 3, 5}, A \B = {2}, Ac = {4, 5}, Bc = {2, 4}.

In the following lemma, we collect some simple algebraic properties of the intersection
and union operations. The reader is encouraged to prove them using the definitions above.

Lemma 1.1.4. Let A,B,C be subsets of a set. The following holds:

• A ∪B = B ∪A and A ∩B = B ∩A (commutativity);

• A ∪ (B ∪ C) = (A ∪B) ∪ C and A ∩ (B ∩ C) = (A ∩B) ∩ C (associativity);

• A ∪ (B ∩C) = (A ∪B) ∩ (A ∪C) and A ∩ (B ∪C) = (A ∩B) ∪ (A ∩C) (distributivity).

Proof. We show only the first distributive property and invite the reader to show the remain-
ing statements.

In order to show that two sets are equal, we need to show that both inclusions hold. Let
us first show that A ∪ (B ∩ C) ⊆ (A ∪ B) ∩ (A ∪ C). Given an element x ∈ A ∪ (B ∩ C), we
need to show that x belongs to (A∪B)∩ (A∪C) as well. Since x ∈ A∪ (B ∩C), either x ∈ A
or x ∈ B ∩C. In either case, x belongs to both A∪B and A∪C and so x ∈ (A∪B)∩ (A∪C).

Let us finally show that A∪ (B ∩C) ⊇ (A∪B)∩ (A∪C). Given an element x ∈ (A∪B)∩
(A∪C), we need to show that x belongs to A∪ (B ∩C) as well. By definition of intersection,
x belongs to both A∪B and A∪C. There are now two possibilities: either x ∈ A or x /∈ A. If
x ∈ A, then trivially x ∈ A ∪ (B ∩ C). If x /∈ A, then it must be that x ∈ B (since x ∈ A ∪B)
and that x ∈ C (since x ∈ A ∪ C). Therefore, x ∈ B ∩ C and so again x ∈ A ∪ (B ∩ C), as
claimed.

Given two objects a and b, we can form a new object, the ordered pair (a, b). The objects
a and b are called the first and second component of the ordered pair (a, b), respectively. Two
ordered pairs (a, b) and (a′, b′) are equal, denoted (a, b) = (a′, b′), if a = a′ and b = b′. If X
and Y are sets, then the Cartesian product X × Y of X and Y is the set of all ordered pairs
(x, y) with x ∈ X and y ∈ Y .

Example 1.1.5. R × R (also denoted as R2) is the real plane the reader is already familiar
with.

Example 1.1.6. For X = {a, b} and Y = {◦, ∗, /},

X × Y = {(a, ◦), (a, ∗), (a, /), (b, ◦), (b, ∗), (b, /)}.

Let us now introduce the important notion of countable set.

Definition 1.1.7. A set is countable if it is in bijection with a subset of the set of positive
integers. A set is uncountable if it is not countable.

In other words, a set is countable if we can make a list of its elements i.e., if we can can
find a first element, a second one, and so on, and eventually assign to each element an integer,
perhaps going on forever.

Example 1.1.8. The set N of natural numbers is countable. Every finite set is countable.
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Example 1.1.9. The set of rational numbers Q is countable. To see this, let us first list the
non-negative rational numbers as follows. Take first all those whose numerator and denomi-
nator sum to 1, then 2, then 3, and so on. When several do so, order them by increasing size.
We obtain the following list:

0

1
,
1

1
,
1

2
,
2

1
,
1

3
,
2

2
,
3

1
,
1

4
,
2

3
,
3

2
,
4

1
, · · ·

Every positive rational number appears on this list somewhere, and actually appears often
on it (this happens because 1/2 appears as 1/2 and also as 2/4 and 3/6 and so on). But all
fractions eventually appear, and appear over and over again.

With a similar reasoning, we can list the negative rational numbers as follows:

−1

1
,−1

2
,−2

1
,−1

3
,−2

2
,−3

1
, · · ·

Consider now these two lists (of non-negative and negative rational numbers). We build a
new list of all rational numbers by making the odd entries of this new list the non-negative
rational numbers, and the even entries the rest, following the orders in the two previous lists.
We obtain:

0

1
,−1

1
,
1

1
,−1

2
,
1

2
,−2

1
,
2

1
,−1

3
,
1

3
,−2

2
,
2

2
, · · ·

Keeping only the first occurrence of each rational number, we obtain a desired list of Q (notice
that in fact there are several different ways one could list the elements of Q).

Rational numbers are described by pairs of integers, and the arguments above generalize
to imply that any collection of pairs of members of a countable set are countable.

Example 1.1.10. Not all infinite sets are countable. Indeed, the set of all infinite sequences
consisting of 0’s and 1’s is uncountable. Other examples of uncountable sets are the set of real
numbers R. In fact, even the open interval (0, 1) = {x ∈ R : 0 < x < 1} is uncountable. These
results can be proved using the so-called Cantor’s diagonal argument (we omit details).

Remark 1.1.11. Loosely speaking, the fact that R is uncountable whereas Q is countable
implies that the “size” of R is strictly bigger than that of Q: “there are more real numbers
than rational numbers”.

We can now generalize the notions of union and intersection of two sets to union and
intersection of a collection of sets:

Definition 1.1.12. Let C be a collection of subsets of a set X. The subset of X containing
all elements that belong to at least one set of C is the union of the collection C, denoted by⋃
C. If C = {A1, A2, . . . , An} is finite, we usually write

⋃
C =

⋃n
i=1Ai. If C = {A1, A2, . . .} is

countable infinite, we usually write
⋃
C =

⋃∞
i=1Ai.

The subset of X containing all elements that belong to all sets of C is the intersection of
the collection C, denoted by

⋂
C. If C = {A1, A2, . . . , An} is finite, we let

⋂
C =

⋂n
i=1Ai. If

C = {A1, A2, . . .} is countable infinite, we let
⋂
C =

⋂∞
i=1Ai.

The following relations between unions and intersections will be used repeatedly. Let us
start with a concrete observation. “It will not snow or rain” means “It will not snow and it will
not rain”. If S is event that it snows and R is event that it rains, then (S ∪R)c = Sc ∩Rc. “It
will not both snow and rain” means “Either it will not snow or it will not rain” i.e., (S ∩R)c =
Sc ∪Rc. More generally, the following holds:
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Lemma 1.1.13 (De Morgan’s laws). let {Ai : i ∈ I} be a collection of sets with I countable.
Then Å⋃

i∈I
Ai

ãc
=
⋂
i∈I

Aci and
Å⋂
i∈I

Ai

ãc
=
⋃
i∈I

Aci .

Proof. Easy exercise left to the reader.

1.2 Induction principle

One trick which arises with some frequency in mathematics is the use of induction arguments
or “proof by induction”. For each n ∈ N, let A(n) be a statement depending on n. To prove
by induction on n that A(n) is true for each n ∈ N, one uses the following steps:

1. Base case: Prove that A(0) is true.

2. This step has two parts:

(a) Induction hypothesis: Suppose that A(n) is true for some n ∈ N.
(b) Induction step (n → n + 1): Prove that A(n + 1) follows from (a) and possibly

other previously proved statements.

If 1. and 2. can be done, then A(n) is true for all n ∈ N. To see this, let

N = {n ∈ N : A(n) is true}.

Then 1. implies that 0 ∈ N and from 2. we have that n ∈ N implies n+ 1 ∈ N for all n ∈ N.
It follows that N = N.

In many applications it is useful to start the induction with some number other than 0.
This leads to the following slight generalization of the above method:

Lemma 1.2.1 (Induction principle). Let n0 ∈ N and, for each n ≥ n0, let A(n) be a state-
ment. If

1. A(n0) is true, and

2. for each n ≥ n0, A(n+ 1) can be proved from the assumption that A(n) is true,

then A(n) is true for all n ≥ n0.

Example 1.2.2. For each natural number n ≥ 1, we have 1 + 3 + 5 + · · ·+ (2n− 1) = n2.
To show this, we proceed by induction. The base case is trivially true as 1 = 12. The

induction hypothesis is: Suppose that, for some n ≥ 1, we have 1+3+5+ · · ·+(2n−1) = n2.
The induction step proceeds as follows:

1 + 3 + 5 + · · ·+ (2(n+ 1)− 1) = 1 + 3 + 5 + · · ·+ (2n+ 1)

= 1 + 3 + 5 + · · ·+ (2n− 1) + (2n+ 1)

= n2 + 2n+ 1

= (n+ 1)2,

which is exactly what we were supposed to show.

Exercise 1.2.3. Show the following statement by induction: For each n ≥ 1,
n∑
k=1

k =
n(n+ 1)

2
.



Chapter 2

Probability

Uncertainty and randomness are unavoidable aspects of our experience: play cards, invest in
shares, etc. Although probability has been around for several centuries, it wasn’t until recently
that the subject was made rigorous. In the thirties, the Russian mathematician Kolmogorov
showed that probability is in fact full-fledged analysis or, more precisely, measure theory.
Properly justifying this assertion goes beyond the scope of the module but we will provide
some examples showing the analytical nature of probability.

This chapter is devoted to formally introducing the objects of probability. In other words,
the goal is to abstract the common features arising in everyday examples in order to build a
probabilistic model i.e., a mathematical description of an uncertain situation. The advantage
of taking an abstract approach is that it allows to develop general tools that can be adapted
to several specific situations. We start with the following definition.

Definition 2.0.1. Any well-defined procedure or chain of circumstances is called an exper-
iment. The end result, or occurrence, is the outcome of the experiment, also known as
elementary event. The set of all possible outcomes is the sample space, denoted by Ω.

Experiment Possible outcomes
Roll a die Ω = {1, 2, 3, 4, 5, 6}
Toss a coin Ω = {H, T}
Toss a coin until heads appears Ω = {H, TH, TTH, TTTH, . . . }
Infinite sequence of coin tosses Ω is the set of all possible infinite sequences of H and T

In the first two experiments Ω is finite, whereas in the latter two it is infinite. Typically,
rather than individual outcomes of the sample space, we are interested in collections of out-
comes.

Experiment Set of outcomes of interest
Roll a die The outcome is an even number
Toss a coin The outcome is either H or T
Infinite sequence of coin tosses The outcome consists of finitely many H

These collections of outcomes are associated to the intuitive notion of event, which is then
a subset of the sample space. If the result of the experiment belongs to this subset, we would
say that the event occured. Thinking of events as subsets of the sample space, we can then
perform on them the usual set-theoretic operations.

6



CHAPTER 2. PROBABILITY 7

Notation Set jargon Probability jargon
Ω Universe Sample space
ω Element of Ω Outcome (also called elementary event)
A Subset of Ω A occurs (i.e., the end result belongs to A)
Ac Complement of A A does not occur (i.e., the end result does not belong to A)
A ∩B Intersection Both A and B occur
A ∪B Union At least one of A and B occurs
A \B Complement of B in A A occurs but not B
A ⊆ B Inclusion If A occurs then B occurs

We would ultimately like to assign a probability to an event and so the natural question is:
Is there any property events should satisfy? As already observed, in general, the sample space
might be infinite and the events we are interested in might contain infinitely many outcomes:

Example 2.0.2. A coin is tossed until the first head turns up and we are concerned with the
number of tosses before this happens. We let Ω = {ω1, ω2, . . . }, where ωi denotes the outcome
“the first i − 1 tosses are tails and the i-th is head”. We might be interested in the following
event A: “the first head occurs after an even number of tosses”. Clearly, A = {ω2, ω4, . . . } =⋃∞
i=1{ω2i} is a countable union of members of Ω i.e., elementary events.

2.1 Sigma-fields

Back to our question: which subsets of the sample space Ω are events? There are certain
requirements that we wish the collection of events to satisfy:

• Ω is an event: this is the trivial event that something happened.

• If A ⊆ Ω is an event, so is Ac: if we are allowed to ask whether A has occurred, we
should also be allowed to ask whether A has not occurred.

• If A1, A2, . . . ⊆ Ω are events, so is their union
⋃∞
i=1Ai: if we are allowed to ask whether

each Ai has occurred, we should also be allowed to ask whether at least one of the Ai’s
has occurred, as seen in Example 2.0.2.

Definition 2.1.1. A collection F of subsets of Ω is called a σ-field (or σ-algebra) of Ω if it
satisfies the following conditions:

1. Ω ∈ F ;

2. If A ∈ F , then Ac ∈ F ;

3. If A1, A2, . . . ∈ F , then
⋃∞
i=1Ai ∈ F .

Our events will form a σ-field of the sample space Ω. Why don’t we go further and allow
uncountable unions? Well, our unions here will be closely tied to sums of probabilities and
uncountable sums can be extremely messy.

Remark 2.1.2. Notice that 1. and 2. imply that ∅ ∈ F . Moreover, if A1, A2, . . . ∈ F is a
countable subfamily of F then, by De Morgan’s laws,

⋂∞
i=1Ai = (

⋃∞
i=1A

c
i )
c ∈ F . Notice also

that, since ∅ ∈ F , we can extend any finite subfamily A1, . . . , An of F to a countable family
by setting Aj = ∅ for each j > n. Therefore, finite unions and intersections of members of F
are still in F . Moreover, if A,B ∈ F , then A \B = A ∩Bc ∈ F .
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Example 2.1.3. • {∅,Ω} is a σ-field of Ω.

• The power set of Ω is a σ-field of Ω.

• For any A ⊆ Ω, {∅, A,Ac,Ω} is a σ-field of Ω.

• The collection of all open intervals of R is not a σ-field of R. Indeed,
⋂∞
n=1(− 1

n ,
1
n) = {0}

is not an open interval.

Exercise 2.1.4. Write down all σ-fields on {a, b}.

Exercise 2.1.5. Let Ω be a countable infinite set and letA = {A ⊆ Ω : A is finite orAc is finite}.
Show that A is not a σ-field.

A natural question might arise: Why not simply taking the power set of Ω all the time for
our probabilistic interests? The reason is that, if Ω is uncountable, its power set is too rich
and it turns out to be impossible to assign probabilities in a consistent fashion to all possible
subsets.

Luckily, in many situations, for example when Ω is countable, we can indeed simply
consider the power set of Ω.

But let us deal with the general situation for a moment and see what is typically done.
If C is a collection of some basic events that we want to be able to discuss, we have seen in
Example 2.1.3 that it is not necessarily a σ-field. What is typically done is to enlarge such a
collection so that it in fact becomes a σ-field. This is done by considering the following notion.

Definition 2.1.6. Let C be a collection of subsets of Ω. The σ-field generated by C, denoted
by σ(C), is the smallest σ-field on Ω containing the collection C.

Remark 2.1.7. Some cautionary words on language. We say that a σ-field F contains the
collection C if each member of C belongs to F (i.e., every set in C is a set in F). For two
σ-fields F1 and F2, we say that F1 is smaller than F2 if F1 ⊆ F2.

Notice that we need to verify that this notion is well-defined! Indeed, a priori, it is not
even clear why such a thing should exist.

Lemma 2.1.8. Let C be a collection of subsets of Ω. Then the σ-field σ(C) generated by C exists
and is unique.

Proof. Uniqueness is trivial: If we have two smallest σ-fields containing C, say F1 and F2,
then F1 ⊆ F2 and F2 ⊆ F1, implying that F1 = F2.

Consider now existence. Let S be the collection of all σ-fields on Ω containing C. Notice
that S is non-empty, as the power set of Ω belongs to S . We claim that

⋂
F∈S F is the

smallest σ-field on Ω containing C. There are three things to be checked:

•
⋂
F∈S F is a σ-field.

Here we need to check the three properties in Definition 2.1.6:

1. Since each F ∈ S is a σ-field on Ω, Ω ∈ F for each F ∈ S and so Ω ∈
⋂
F∈S F .

2. Let A ∈
⋂
F∈S F . Then A ∈ F for each F ∈ S and so Ac ∈ F for each F ∈ S .

Therefore, Ac ∈
⋂
F∈S F .
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3. Let A1, A2, . . . ∈
⋂
F∈S F . Then A1, A2, . . . ∈ F for each F ∈ S . But

⋃∞
i=1Ai ∈ F

for each F ∈ S and so
⋃∞
i=1Ai ∈

⋂
F∈S F .

•
⋂
F∈S F contains C.

This follows from the fact that, for each F ∈ S , F contains C.

•
⋂
F∈S F is the smallest σ-field containing C.

Let G be any σ-field containing C. Then G ∈ S and so
⋂
F∈S F ⊆ G.

In order to define what is arguably the most important σ-field on R, we need a little bit of
topology.

Definition 2.1.9. A subset U ⊆ R is open if, for each x ∈ U , there exists ε > 0 such that the
open interval centered at x and with radius ε is contained in U . In other words, (x−ε, x+ε) ⊆
U .

Similarly, a subset U ⊆ R2 is open if, for each x ∈ U , there exists ε > 0 such that the open
ball centered at x and with radius ε is contained in U . In other words, Bε(x) = {y ∈ R2 :
|x− y| < ε} ⊆ U , where |x− y| denotes the Euclidean distance in R2 between x and y.

x

ε

Bε(x)
U

Figure 2.1: The open ball Bε(x) in R2 and an example of an arbitrary open set U ⊆ R2: for each of its points x
there exists a sufficiently small open ball centered at x and contained in U .

Example 2.1.10. Every open interval in R is open. For each x ∈ R, {x}c is an open set in R
but {x} is obviously not open. More generally, the closed interval [x, y] is not open but [x, y]c

is.

Exercise 2.1.11. Let U1 and U2 be two open sets in R2. Is U1 ∩ U2 open?

Definition 2.1.12. For n = 1, 2, the Borel σ-field B on Rn is the σ-field generated by the
open sets in Rn. The sets in B are called Borel sets.

The Borel σ-field on the real line is extremely important in probability theory and will
appear again when we will talk about random variables. Rather than taking the whole family
of open sets, it can in fact be equivalently generated by open intervals, closed intervals, half-
lines, etc.

Proposition 2.1.13. The Borel σ-field on the real line R is generated by any of the following
collections of subsets of R:

• C = {(−∞, x] : x ∈ R};

• C = {(x, y) : x, y ∈ R, x < y};
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• C = {[x, y] : x, y ∈ R, x ≤ y};

• C = {(x, y] : x, y ∈ R, x < y}.

Remark 2.1.14. Proposition 2.1.13 says that the smallest σ-field on R containing all open sets
can be generated by the family of closed intervals. This might appear odd, as closed intervals
are not open. But recall that σ-fields are closed under complementation, and it is by taking
complements of closed intervals (and their intersections and unions) that we manage to get
the open sets.

Example 2.1.15. Since B is a σ-field containing all open sets, it contains all singletons {x},
as {x}c is an open set in R.

2.2 Probability measures

To any experiment we will associate the pair (Ω,F), where Ω is the set of all possible outcomes
(elementary events) and F is a σ-field of subsets of Ω. We will try to assign a probability to
each set in F and in order to do so, we will be guided by intuition.

Suppose that an experiment has several possible outcomes that are not necessarily equally
likely. How can we define the probability of a certain event A? One intuitive way is the
following. We run the experiment a large number N of times, keeping the initial conditions
as equal as possible. Denoting by N(A) the number of occurences of A after the first N trials,
we would expect that when N becomes larger and larger, the ratio N(A)/N converges to
some finite limit. We may then define the probability P(A) that A occurs on a particular trial
as this limit. In any case, for large N , N(A)/N should be an approximation of P(A). Notice
that

• 0 ≤ N(A)/N ≤ 1;

• If A = ∅, then N(A)/N = 0. If A = Ω, then N(A)/N = 1;

• If A and B are disjoint events, then N(A ∪ B) = N(A) +N(B) and so N(A ∪ B)/N =
N(A)/N +N(B)/N .

With the observations above in mind and recalling Example 2.0.2, we state the following:

Definition 2.2.1. A probability measure P on (Ω,F) is a function P : F → R satisfying the
following:

1. For each A ∈ F , we have 0 ≤ P(A) ≤ 1;

2. P(∅) = 0 and P(Ω) = 1;

3. For every countable infinite collection A1, A2, . . . of mutually disjoint members of F
(i.e., Ai ∩Aj = ∅ for each i 6= j), we have

P
Å ∞⋃
i=1

Ai

ã
=

∞∑
i=1

P(Ai).

The triple (Ω,F ,P) consisting of a set Ω, a σ-field F of subsets of Ω and a probability measure
P on (Ω,F) is called a probability space. Any set in F is called event.
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Remark 2.2.2. For the time being, the reader can think of
∑∞

i=1 P(Ai) as the infinite sum
P(A1) + P(A2) + P(A3) + · · · . The proper mathematical definition will be given in MTH1011
and is not fundamental for understanding the rest of the notes.

Observation 2.2.3. The axioms P(∅) = 0 and P(A) ≤ 1 in Definition 2.2.1 are in fact redun-
dant i.e., they can be deduced from the others. Check it!

Remark 2.2.4. The event Ω is the sure event: it contains all possible outcomes and P(Ω) = 1.
It is worth noting that there may be also other events E ∈ F such that P(E) = 1. Such events
are called almost sure.

Countable additivity (the last condition in the definition) readily implies the following
result:

Lemma 2.2.5 (Finite additivity). Let (Ω,F ,P) be a probability space. For every finite collec-
tion A1, A2, . . . , An of mutually disjoint members of F , we have

P
Å n⋃
i=1

Ai

ã
=

n∑
i=1

P(Ai).

Proof. Define Am = ∅ for each m > n. Since ∅ ∈ F and the newly defined countable infinite
collection A1, A2, . . . consists of mutually disjoint members of F , we use countable additivity
to conclude.

The conceptual construction of a probability space has no absolute physical meaning,
it is just guided by some intuitive physical interpretation. The properties which the
measure P is required to satisfy are called the probability axioms and were introduced
by Kolmogorov, though not exactly in the form above (see Observation 2.2.3). The first
two axioms are just a matter of convention. The key one is countable additivity.

Think of a probability space as the mathematical description of an experiment. For ex-
ample, tossing a coin, rolling dice, taking a number in a lottery, etc. In each case, there is a
certain amount of randomness, or unpredictability in the experiment. To describe this math-
ematically, start with what we observe: the outcome. Ω is the set of all possible outcomes
of the experiment: each element of Ω represents an outcome. An event is a set of outcomes
belonging to the σ-field F . The probability measure gives the probability of events. We can
associate a probability space (Ω,F ,P) with any experiment. The informations allowing us to
compute the actual value of P(A) are contained in the description of the experiment.

Example 2.2.6. Suppose the experiment is rolling a die i.e., a cube whose six faces are num-
bered 1 to 6. We can take Ω = {1, 2, 3, 4, 5, 6} as the set of outcomes and, since Ω is countable,
the power set of Ω as the σ-field F . To get the probability measure, we note that if the die
is well-made, the six sides are identical except for their label. No side can be more probable
than another. Therefore,

P({1}) = P({2}) = · · · = P({6}).

The reasoning in the preceding example was derived from symmetry considerations: the
possible outcomes were indistinguishable except by their labels. In fact, this is about the only
situation in which we can confidently assign probabilities by inspection. But luckily, while
nature is not always obliging enough to divide itself into equally-likely pieces, one can start
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with the equally-likely case and then determine the probabilities in more complex situations.
Which is what the subject is about.

The idea of symmetry applies to events, not just outcomes. Consider a physical experiment
with finitely or countably many outcomes, labeled in some convenient fashion.

Symmetry principle: If two events are indistinguishable except for the way the out-
comes are labeled, they are equally likely.

For example, roll a die and consider the events “even” and “odd”, i.e., {2, 4, 6} and {1, 3, 5}.
If we physically renumber the faces of the die, so that we interchange n and 7 − n on each
face, so that 1 ↔ 6, 2 ↔ 5 and 3 ↔ 4, then the events “even” and “odd” are interchanged.
The symmetry principle says that the two events must have the same probability.

Example 2.2.7. Suppose the experiment is tossing a coin. We can take Ω = {H,T}, F =
2Ω = {∅, H, T,Ω} and P defined by

P(Ω) = 1, P(∅) = 0, P(H) = p, P(T ) = 1− p,

where p is a fixed real number in [0, 1]. It is easily seen that all three probability axioms are
satisfied. If p = 1/2, we say that the coin is fair.

Remark 2.2.8. The probability space for an experiment is not unique. This is useful in prac-
tice. It allows us to choose the probability space which works best in the particular circum-
stances, or to not choose one at all; we do not always have to specify the probability space. It
is usually enough to know that it is there if we need it.

The simplest probability spaces are those whose sample space Ω = {ω1, ω2, . . . } contains
countably many outcomes (we call such probability spaces, countable probability spaces).
Recall that in such cases we may always take as σ-field F the power set 2Ω. For countable
probability spaces, a probability measure P on F is fully determined by the values assigned to
the elementary events ωi. Indeed, consider an event A ⊆ Ω. Since A is countable (infinite or
finite), then

A =
⋃
ω∈A
{ω}

can be expressed as a countable union of elementary events. Since these events are obviously
mutually disjoint, it follows from countable additivity (or finite additivity) that

P(A) =
∑
ω∈A

P({ω}).

Suppose now that the sample space Ω is finite and that P({ω}) = p, for each elementary
event ω ∈ Ω. By the probability axioms, we have

1 = P(Ω) =
∑
ω∈Ω

P({ω}) = p|Ω|,

from which p = 1/|Ω|. Therefore, the probability of the event A is

P(A) =
∑
ω∈A

P({ω}) = p|A| = |A|
|Ω|

.
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Observation 2.2.9. A probability space is a model for an experiment. A priori there is no reason
why all outcomes should be equally probable. It is an assumption that should be made only when
believed to be applicable.

Example 2.2.10. Two fair dice are rolled. What is the probability that the sum is 7?
A convenient sample space is constructed by viewing the two dice as distinguishable, say

one blue and one red, and taking Ω = {(i, j) : 1 ≤ i, j ≤ 6}, where the first component
accounts for the outcome of the blue die and the second component for the outcome of
the red die. By symmetry, it is natural to assume that each of the |Ω| = 36 outcomes is
equally likely. The event “sum equals 7” is A = {(1, 6), (2, 5), (3, 4), (4, 3), (5, 2), (6, 1)} and so
P(A) = |A|/|Ω| = 1/6.

Observation 2.2.11. How do we know which probability space to assign to each experiment?
Well, a model is a model: it may or may not relate to reality. In the previous example, we applied
symmetry, as we believe that all outcomes of the experiment are equally likely.

Example 2.2.12. Three fair coins are tossed. What is the probability of observing three
heads or three tails?

One might be tempted by the following fallacious argument. There are four possible
outcomes, namely 3 heads, 2 heads and 1 tail, 1 head and 2 tails, 3 tails. Since the event we
are interested in consists of two of these outcomes, the desired probability is 2/4. However,
this reasoning assumes that the four outcomes are equally likely, which is not the case.

A solid argument is the following. Consider the coins to be distinguishable, say £2, £1 and
50p. We have the following possible outcomes:

£2 £1 50p
H H H
H H T
H T H
T H H
T T H
T H T
H T T
T T T

By fairness of the coins, these eight outcomes are equally likely and so the desired probability
is 2/8.

Example 2.2.13. A tea set has four cups and saucers with two cups and saucers in each of
two different colors, say a and b. If the cups are placed at random on the saucers, what is the
probability that no cup is on a saucer of the same color?

As a sample space, we consider the distinct ways of arranging the cups by color with the
saucers fixed (suppose without loss of generality the saucers are listed as aabb). There are six
possible ways of arranging the cups: aabb, abba, abab, baab, baba, bbaa. By symmetry, they are
equally likely. Since only one of these arrangements has no cup on a saucer of the same color,
the required probability is 1/6.

Exercise 2.2.14. A bag contains 2021 red balls and 2021 black balls. We remove two balls at a
time repeatedly and

• discard them if they are of the same color;
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• discard the black ball and return to the bag the red ball if they are of different colors.

What is the probability that this process will terminate with one red ball in the bag? Hint: What are the

possible outcomes?

2.3 Counting principles

We have seen in the previous examples that it is often necessary to be able to count the
number of subsets of Ω with a given property. We now take a systematic look at some counting
methods.

2.3.1 Multiplication rule

Take N finite sets Ω1, . . . ,ΩN (some of which might coincide), with cardinalities |Ωk| = nk.
We imagine to pick one element from each set: how many possible ways do we have to do so?
Clearly, we have n1 choices for the first element. Now, for each choice of the first element, we
have n2 choices for the second. Once the first two elements are picked, we have n3 choices for
the third, and so on, giving |Ω1 × · · · ×ΩN | = n1 · · ·nN . We refer to this as the multiplication
rule.

Example 2.3.1 (Number of subsets). Suppose a set Ω = {ω1, . . . , ωn} has n elements. How
many subsets does Ω have?

We proceed as follows. To each subset A of Ω we can associate a string of 0’s and 1′s of
length n such that the i-th element of the string is 1 if ωi ∈ A, and 0 otherwise. For example, if
Ω = {ω1, ω2, ω3, ω4}, to the subset A = {ω1} we associate the string 1, 0, 0, 0 and to the subset
B = {ω1, ω3, ω4} we associate the string 1, 0, 1, 1. This defines a bijection between the subsets
of Ω and the strings of 0’s and 1’s of length n. Thus we have to count the number of such
strings. Since for each element of the string we have 2 choices (either 0 or 1), there are 2n

strings. This shows that a set of n elements has 2n subsets (hence the previously introduced
notation 2Ω).

2.3.2 Permutations

A permutation of a set A is a bijection from A to itself. In other words, it is an ordering of
the elements of A. How many possible permutations of a set of n elements are there?

Label the elements of A as {1, 2, . . . , n}. We may obtain all permutations by subsequently
choosing the image of element 1, then the image of element 2 and so on. We have n choices
for the image of 1, then n − 1 choices for the image of 2, n − 2 choices for the image of 3
until we have only one choice for the image of n. Thus the total number of choices is, by the
multiplication rule, n! = n(n − 1)(n − 2) · · · 1. Thus there are n! different permutations, or
orderings, of n elements. Equivalently, there are n! different bijections from any two sets of n
elements.

Example 2.3.2. There are 52! possible orderings of a standard deck of cards.

2.3.3 Subsets

Let us go back to Example 2.2.13. How did we know there are exactly six possible ways of
arranging the cups? Well, that corresponds to the number of ways of placing the cups of color
a. Indeed, for each such a choice, the positions of the cups of color b are forced. But then this
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is the general problem of counting the number of ways a subset of size k can be chosen from
a set of size n ≥ k or, equivalently, the number of subsets of size k of a set of size n.

Let us first count the number of ordered subsets of size k of a set of size n. We have n
choices for the element in first position. For each such a choice, we have n− 1 choices for the
element in second position and so on up to n− (k− 1) choices for the last element in position
k. Overall,

n · (n− 1) · (n− 2) · · · (n− k + 1) =
n!

(n− k)!
(2.1)

ordered subsets. An alternative way to obtain the above formula is the following: to pick k
ordered elements out of n, first pick a permutation of the n elements (n! choices), then forget
all elements but the first k. Since for each choice of the first k elements there are (n − k)!
permutations starting with those k elements, we obtain again Equation (2.1).

On the other hand, if we are interested in unordered subsets, then Equation (2.1) over-
counts: every subset is counted exactly k! times (with every possible ordering of its elements).
So we have to divide by k!.

Lemma 2.3.3. The number of subsets of size k of a set of size n is

n!

k!(n− k)!
,

denoted by
(n
k

)
. The numbers

(n
k

)
are called binomial coefficients.

More generally, suppose we have integers n1, n2, . . . , nk with n1 +n2 + · · ·+nk = n. Then
the number of ways to partition n elements into k subsets of cardinalities n1, . . . , nk is

n!

n1! · · ·nk!
,

denoted by
( n
n1,...,nk

)
. The numbers

( n
n1,...,nk

)
are called multinomial coefficients.

Example 2.3.4. Suppose that in a city of n people there are and two residents A and B each
having k friends in the city. Let us assume that the friends for each of A and B are selected
at random. Then there are

(n−1
k

)
ways to select k friends for A (we don’t count A as his/her

own friend) and
(n−1
k

)
ways to select k friends for B.

Now, in how many cases A and B are not friends and do not even have a common friend?
Well, we can choose k friends for A in

(n−2
k

)
ways (we are not choosing A or B as friends of

A) and then k friends for B in
(n−k−2

k

)
ways.

The following result explains the name “binomial coefficient”:

Theorem 2.3.5 (Binomial theorem). The coefficient of xn−kyk in the expansion of (x+y)n is(n
k

)
. In other words, the following identity holds:

(x+ y)n =

Ç
n

0

å
xn +

Ç
n

1

å
xn−1y + · · ·+

Ç
n

n− 1

å
xyn−1 +

Ç
n

n

å
yn.

Proof. Think of expanding

(x+ y)n = (x+ y)(x+ y) · · · (x+ y)
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so that we get rid of all parentheses. We get each term in the expansion by selecting one of
the two terms in each factor, and multiplying all the selected terms. If we choose x exactly
n − k times, then we must choose y exactly k times and we get a term of the form xn−kyk.
How many times do we get this same term? Clearly, as many times as the number of ways to
select the k factors that supply y (the remaining factors supply x). This can be done in

(n
k

)
ways. As a side remark, this argument also shows that

(n
k

)
=
( n
n−k
)
.

Exercise 2.3.6. Prove the Binomial theorem by induction.

2.3.4 Subsets with repetitions

How many ways are there to choose k elements from a set of n elements, allowing repetitions?
Consider first the ordered case. We have n choices for the first element, n choices for the

second element and so on. Thus there are nk possible ways to choose k ordered elements
from n, allowing repetitions.

Consider now the unordered case i.e., we want to choose k elements from n, allowing
repetitions but discarding the order. How many ways do we have to do so? Naively dividing
nk by k! doesn’t give the right answer, since there may be repetitions. Instead, we count as
follows. Label the n elements {1, . . . , n} and for each element draw a ∗ each time it is picked.
Note that there are k ∗’s and n− 1 vertical lines. An example is the following

∗ ∗ | ∗ | | · · · | ∗ ∗∗, (2.2)

where the element 1 is picked two times, the element 2 is picked one time, the element 3
is picked zero times and so on. The above diagram uniquely identifies an unordered set of
(possibly repeated) k elements. Thus we simply have to count how many such diagrams there
are. The only restriction is that there must be n − 1 vertical lines and k ∗’s. Since there are
n + k − 1 locations, we can fix such a diagram by assigning the positions of the ∗’s, which
can be done in

(n+k−1
k

)
ways. This therefore counts the number of unordered subsets of k

elements from n, without ordering.

Example 2.3.7 (Ordered partitions). An ordered partition of k of size n is an n-tuple
(k1, k2, . . . , kn) of non-negative integers such that k1 + · · · + kn = k. How many ordered
partitions of k of size n are there?

We give a graphic representation of each such partition as follows: draw k1 ∗’s followed by
a vertical line, then k2 ∗’s followed by another vertical line and so on. For example, (1, 0, 3, 2)
is represented by ∗ | | ∗ ∗ ∗ | ∗ ∗. Note the similarity with Equation (2.2). Now, since this
determines a bijection, it again suffices to count the number of diagrams made of k ∗’s and
n− 1 vertical lines, which is

(n+k−1
k

)
.

Example 2.3.8. A Bank issues bank cards with PINs consisting of 4 digits in {0, 1, 2, . . . , 9}.
How many unique PINs are there if:

1. any 4-digit code can be used;

2. the digits must be different;

3. the digits must be different and must not be in ascending or descending order?

We proceed as follows:

1. There are 10 choices for the first digit, 10 choices for the second digit and so on, giving
a total of 104 unique PINs.
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2. The number of PINs with different digits is 10× 9× 8× 7 = 5040.

3. Consider a PIN on 4 different digits, say {1, 3, 5, 7}. There are 4! different such PINs and
there is one in ascending order 1, 3, 5, 7 and one in descending order 7, 5, 3, 1. So there
are 4! − 2 = 22 desired PINs. This result applies to any set of 4 different digits. Since
the number of such sets is

(10
4

)
= 210, the number of unique PINs is 210× 22 = 4620.

Example 2.3.9. Recall that bridge is played with a pack of 52 cards divided into 4 suits
(clubs, diamonds, hearts, spades) where each suit has 13 denominations (Ace, 2, 3, 4, 5, 6,
7, 8, 9, 10, Jack, Queen, King). In a game of bridge, what is the probability of a given player
being dealt a hand (of 13 cards)

1. containing entirely one suit,

2. containing exactly five spades,

from a well-shuffled pack?

1. The number of different bridge hands is the same as the number of ways of selecting 13
cards from 52 distinct cards, where the order is not important, namely

(52
13

)
. Each hand

is an outcome and the
(52

13

)
outcomes are assumed equally likely. Since there are exactly

4 hands consisting entirely of one suit, the desired probability is 4/
(52

13

)
≈ 6.3× 10−12.

2. Let us count the favourable outcomes. There are
(13

5

)
ways of choosing the 5 spades and(39

8

)
ways of choosing the 8 non-spades. By the multiplication rule, we then have a total

of
(13

5

)(39
8

)
hands with exactly 5 spades. The desired probability is then(13

5

)(39
8

)(52
13

) ≈ 0.125.

Example 2.3.10. What is the probability that, in 6 throws of a fair die, all faces turn up?
Denoting by xi the score on the i-th throw, an outcome is the ordered set (x1, x2, . . . , x6).

There are 66 equally likely outcomes. The favourable outcomes are the permutations of
{1, 2, . . . , 6}. Since there are 6! such permutations, the desired probability is 6!/66.

Exercise 2.3.11. (a) In how many ways can we arrange 10 people in a row?

(b) Suppose that one of these 10 people is John and another is Jack. In how many ways can we
arrange these 10 people in a row so that Jack is next to John?

(c) In how many ways can we arrange these 10 people in a row so that Jack is to the right of
John, though not necessarily next right?

Exercise 2.3.12. (a) In how many ways can we distribute 10 different marbles among 5 dif-
ferent boxes?

(b) In how many ways can we distribute 10 indistinguishable marbles among 5 different boxes?
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2.4 Properties of probability measures

After our counting detour, we now go back to a generic probability space (Ω,F ,P). The goal
is to derive several useful properties of probability measures from the probability axioms.

Lemma 2.4.1. Let (Ω,F ,P) be a probability space and let A,B ∈ F be events. The following
are true:

(a) P(Ac) = 1− P(A);

(b) If A ⊆ B, then P(B) = P(A) + P(B \A) ≥ P(A) (monotonicity);

(c) P(A ∪B) = P(A) + P(B)− P(A ∩B) (inclusion-exclusion).

Proof. Notice first that, as observed in Remark 2.1.2, all the sets considered belong to F and
so we can indeed talk about their probabilities.

(a) Since A ∩ Ac = ∅ and A ∪ Ac = Ω, finite additivity and the 2nd axiom imply that
P(A) + P(Ac) = P(Ω) = 1.

(b) Since A∩ (B \A) = ∅ and A∪ (B \A) = B, finite additivity and the 2nd axiom imply
that P(A)+P(B\A) = P(B). Since P(B\A) ≥ 0 (1st axiom), we then have that P(B) ≥ P(A).

(c) A ∪B can be written as the disjoint union A ∪ (B \A). We then have that,

P(A ∪B) = P(A) + P(B \A) = P(A) + P(B \ (A ∩B)) = P(A) + P(B)− P(A ∩B),

where in the first equality we use additivity, in the second the fact that B \ A = B \ (A ∩ B)
and in the third (b).

Example 2.4.2. In a population of 1000 people, 10% are left-handed, 5% are color-blind, and
of these 10 are left-handed. A person is selected at random from the population. What is the
probability of a left-handed or color-blind person (or both) being selected?

Let LH and CB be the event that the selected person is left-handed and colour-blind,
respectively. The desired probability is

P(LH ∪ CB) = P(LH) + P(CB)− P(LH ∩ CB) =
100

1000
+

50

1000
− 10

1000
=

140

1000
= 0.14.

Example 2.4.3. A fair coin is tossed 5 times. What is the probability of getting at least one
head?

We can take as our sample space the set Ω = {HHHHH,HHHHT, . . . , TTTTT}. By
fairness, we may assume that all outcomes are equally likely. Let A be the event that no head
is obtained. The desired probability is then

1− P(A) = 1− 1

25
=

31

32
.

Example 2.4.4. Let (Ω,F ,P) be a probability space and let A,B ∈ F be events. Although
P(A) = P(A ∩B) is obviously false in general, it is true if P(B) = 1. Indeed, in this case

P(A ∩B) = P(A) + P(B)− P(A ∪B) = P(A) + (1− P(A ∪B)) ≥ P(A).

The reverse inequality always holds by monotonicity.

The reader will have the chance to see the following result in analysis modules: If f : R→
R is a continuous function at x0 and the sequence x1, x2, . . . converges to x0, then the se-
quence f(x1), f(x2), . . . converges to f(x0). A similar statement holds for probability mea-
sures.
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Lemma 2.4.5 (Continuity of probability). Let (Ω,F ,P) be a probability space. For every in-
creasing sequence of events A1, A2, . . . (i.e., A1 ⊆ A2 ⊆ · · · ), we have that

P
Å ∞⋃
i=1

Ai

ã
= lim

i→∞
P(Ai).

Similarly, for every decreasing sequence of events B1, B2, . . . (i.e., B1 ⊇ B2 ⊇ · · · ), we have that

P
Å ∞⋂
i=1

Bi

ã
= lim

i→∞
P(Bi).

Example 2.4.6. It is intuitively clear that the chance of obtaining no heads in an infinite
sequence of tosses of a fair coin is 0. A rigorous proof goes as follows. Let Ai be the event
that the first i tosses of the coin yield at least one head. Then Ai ⊆ Ai+1 for each i ≥ 1, so
that A1, A2, . . . is an increasing sequence. The event A =

⋃∞
i=1Ai is nothing but the event

that heads occurs sooner or later i.e., it is the complement of the event we are interested in.
By continuity of probability,

P(A) = lim
i→∞

P(Ai).

However,

P(Ai) = 1−
Å

1

2

ãi
,

and so P(A) = limi→∞ P(Ai) = 1, giving that the probability P(Ac) that no head ever appears
is 0.

The following result, despite its simplicity, is extremely useful in probability theory. It
asserts that the probability that at least one event in a sequence occurs can not exceed the
sum of the probabilities of the events in the sequence.

Lemma 2.4.7 (Union bound). Let (Ω,F ,P) be a probability space and let A1, A2, . . . be a
sequence of events. Then

P
Å ∞⋃
i=1

Ai

ã
≤
∞∑
i=1

P(Ai).

Proof. We only show the finite version of the statement, namely that, for each n,

P
Å n⋃
i=1

Ai

ã
≤

n∑
i=1

P(Ai).

We proceed by induction on n. The base case n = 1 is trivial. Therefore, suppose that
A1, . . . , An+1 ∈ F . We define A = A1 ∪ · · · ∪An and B = An+1 \A. Then A1 ∪ · · · ∪An+1 can
be written as the disjoint union A ∪B. But then

P(A1 ∪ · · · ∪An+1) = P(A) + P(B) ≤
n∑
i=1

P(Ai) + P(B) ≤
n∑
i=1

P(Ai) + P(An+1) =

n+1∑
i=1

P(Ai),

where the first equality follows from finite additivity, the first inequality follows from the
induction hypothesis and the last inequality follows from monotonicity. This concludes the
proof by induction.
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Exercise 2.4.8. Let (Ω,F ,P) be a probability space and let A1, A2, . . . be a countable family
of events. Show that if P(Ai) = 1, for each i, then P(

⋂∞
i=1Ai) = 1. Similarly, show that if

P(Ai) = 0, for each i, then P(
⋃∞
i=1Ai) = 0.

As mentioned, the union bound is a simple and yet extremely useful tool in probability.
We now see it in action in the so-called probabilistic method.

Example 2.4.9. Our motivating question is the following: Will an arbitrary group of 6 mem-
bers of a social network necessarily contain a subgroup of 3 mutual friends or a subgroup
of 3 mutual strangers? Perhaps surprisingly, the answer is “Yes”. A group of 5 individuals,
however, does not necessarily have this property. We can model and generalize this problem
via a graph, an ubiquitous object in computer science and operations research. So what is
a graph? Informally speaking (which is enough for us), a graph is a set of points, called
vertices, connected by lines, called edges. The complete graph Kn is the graph on n vertices
such that any two vertices are connected by an edge. A two-coloring of the edges of Kn is an
assignment of colors to its edges so that each edge is colored either red or blue.

Figure 2.2: A two-coloring of K6.

We can encode the fact of being friends by a red line and the fact of being strangers by
a blue line. Therefore, generalizing our motivating question, we might ask: Does Kn always
contain a monochromatic Kk i.e., a red Kk or a blue Kk, for any two-coloring? Frank Ramsey
answered this question in his celebrated theorem:

Theorem 2.4.10 (Ramsey’s theorem). For any k ≥ 2, there is a finite value of n for which
any two-coloring of Kn contains a monochromatic Kk and so there is a smallest such value n,
called the Ramsey number R(k, k).

We have remarked thatR(3, 3) = 6. This is in fact not difficult to show (try!) but as soon as
the value of k increases, determining R(k, k) has proved to be an extremely difficult problem.
At the moment, we do not even know R(5, 5); we just know that it is between 43 and 48. But
can we say anything about how quickly Ramsey numbers grow with k? In a seminal paper
from 1947 that gave birth to what is now called the probabilistic method, Erdős showed how
a lower bound for R(k, k) may be obtained almost effortlessly using a probabilistic argument.

Roughly speaking, the probabilistic method works as follows: Trying to prove that a struc-
ture with a certain desired property exists, one defines an appropriate probability space of
structures and then shows that the desired property holds in this space with positive proba-
bility. The method is best illustrated in action.



CHAPTER 2. PROBABILITY 21

Consider a random two-coloring of Kn. The sample space is the set of all possible two-
colorings of Kn. How many such colorings are there? Well, each edge can be colored either
red or blue and since there are

(n
2

)
edges, we have 2(n2) possible colorings, where in random

we assume that each has equal probability 2−(n2).
Let S be any fixed set of k vertices in Kn and let AS be the event that S forms a monochro-

matic Kk. Then AS is the union of the disjoint events {Kk is red} and {Kk is blue} and so

P(AS) = 21−(k2).

Let’s now look at the event
⋃
S: |S|=k AS that there is at least one monochromatic Kk. We

can estimate its probability by the union bound:

P
Å ⋃
S: |S|=k

AS

ã
≤

∑
S: |S|=k

P(AS) =

Ç
n

k

å
21−(k2).

Therefore, if r(k) denotes the largest integer n satisfying
(n
k

)
21−(k2) < 1, then

P
Å ⋃
S: |S|=k

AS

ã
< 1

and so there must be some two-coloring ofKr(k) without any monochromaticKk i.e.,R(k, k) >
r(k). One could in fact find an estimate for r(k).

2.5 Conditional probability

Conditional probability provides us with a way to reason about the outcome of an experiment
based on partial information. Suppose a certain experiment is repeated N times. On each
trial we observe the occurences or non-occurences of two events A and B. Suppose we are
interested only in the outcomes for which B occurs; all other trials are disregarded. The
proportion of times that A occurs in this smaller collection of trials is N(A ∩B)/N(B) and

N(A ∩B)

N(B)
=
N(A ∩B)/N

N(B)/N
.

As these ratios can be thought as approximations for the probabilities, the probability that A
occurs given that B occurs should intuitively be P(A ∩B)/P(B).

Definition 2.5.1. Let (Ω,F ,P) be a probability space and let A,B ∈ F with P(B) > 0. The
conditional probability that A occurs given that B occurs is the value

P(A|B) =
P(A ∩B)

P(B)
.

We stress the fact that this is a definition. The next result justifies the term conditional
probability:

Lemma 2.5.2. Let (Ω,F ,P) be a probability space and let B ∈ F be such that P(B) > 0. The
function P : F → R defined by P (A) = P(A|B) is a probability measure.

Proof. We need to verify that the function P satisfies the three properties in Definition 2.2.1:
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1. Let A ∈ F . By monotonicity, P(A ∩B) ≤ P(B) and so 0 ≤ P(A ∩B)/P(B) ≤ 1.

2. P(∅|B) = P(∅ ∩B)/P(B) = 0 and P(Ω|B) = P(Ω ∩B)/P(B) = 1.

3. Let A1, A2, . . . be a family of pairwise disjoint events. Then

P

Å ∞⋃
i=1

Ai

ã
= P
Å ∞⋃
i=1

Ai|B
ã

=

P
Å(⋃∞

i=1Ai
)
∩B
ã

P(B)
=

P
Å⋃∞

i=1(Ai ∩B)

ã
P(B)

=

∑∞
i=1 P(Ai ∩B)

P(B)

=
∞∑
i=1

P(Ai|B)

=
∞∑
i=1

P (Ai),

where the first equality follows from the definition of P , the second from the definition
of conditional probability, the third from the distributive property, the fourth from count-
able additivity for the probability measure P, the fifth from the definition of conditional
probability and the last from the definition of P .

Lemma 2.5.2 implies that we can apply all the tools developed so far to conditional prob-
abilities.

Example 2.5.3 (Equally likely outcomes). Let Ω be a finite set with equally likely outcomes
i.e., P(A) = |A|/|Ω| for each A ⊆ Ω. Then, for any non-empty B ⊆ Ω, we have

P(A|B) =
P(A ∩B)

P(B)
=
|A ∩B|/|Ω|
|B|/|Ω|

=
|A ∩B|
|B|

.

This means that, in the case of equally likely outcomes, the conditional probability of A given
B counts the proportion of outcomes in B that belong to A. It also suggests that conditional
probabilities can also be viewed as a probability law on a new universe B, because all of the
conditional probability is concentrated on B.

Example 2.5.4. A fair die is thrown. What is the probability of a 2 given that an even number
has occurred?

Letting A to be the event that 2 is thrown and B be the event that an even number is
thrown, Example 2.5.3 implies that the desired probability is 1/3.

In many situations it is natural to assign values to some conditional probabilities and, from
them, deduce the values of non-conditional probabilities.

Example 2.5.5. A student can’t decide whether to study history or literature. If he takes
literature, he will pass with probability 1/2; if he takes history, he will pass with probability
1/3. He made his decision based on a coin toss. What is the probability that he opted for
history and passed the exam?

As a sample space we take {history, literature} × {pass, fail}. If A is the event that he
passed, then A = {history, literature} × {pass}. If B denotes the event that he opted for
history, then {history} × {pass, fail}. We have

P(B) = P(Bc) =
1

2
, P(A|B) =

1

3
, P(A|Bc) =

1

2
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and so P(A ∩ B) = P(A|B)P(B) = 1/6. Notice that making the sample space explicit was in
fact not crucial in this case, as often happens with conditional probabilities.

When we are dealing with an event A which occurs if and only if each one of several
events A1, . . . , An has occurred i.e., A = A1 ∩ A2 ∩ · · · ∩ An, we can view the occurrence
of A as the occurrence of A1, followed by the occurrence of A2, then of A3 and so on. The
probability of A can then be computed using the following rule:

Lemma 2.5.6 (Multiplication rule for probabilities). Assuming that all the following condi-
tional probabilities are positive, we have

P
Å n⋂
i=1

Ai

ã
= P(A1)P(A2|A1)P(A3|A1 ∩A2) · · ·P

Å
An|

n−1⋂
i=1

Ai

ã
.

Proof.

P
Å n⋂
i=1

Ai

ã
= P(A1) · P(A1 ∩A2)

P(A1)
· P(A1 ∩A2 ∩A3)

P(A1 ∩A2)
· · · · ·

P
(⋂n

i=1Ai
)

P
(⋂n−1

i=1 Ai
)

= P(A1) · P(A2|A1) · P(A3|A1 ∩A2) · · · · · P
Å
An|

n−1⋂
i=1

Ai

ã
.

The multiplication rule is particularly useful in problems involving sequential operations.

Example 2.5.7. Three cards are drawn from an ordinary 52-card deck without replacement
(drawn cards are not placed back in the deck). We wish to find the probability that none of
the three cards is a heart. We assume that at each step, each one of the remaining cards is
equally likely to be picked. By symmetry, this implies that every triplet of cards is equally
likely to be drawn.

One possible approach, called parallel, is to count the number of all card triplets that
do not include a heart and divide it by the number of all possible card triplets (see Exer-
cise 2.5.8). However, in this case, it is more convenient to adopt a sequential approach. For
each i ∈ {1, 2, 3}, let Ai be the event that the i-th card is not a heart. We compute the desired
probability P(A1 ∩ A2 ∩ A3) that none of the three cards is a heart using the multiplication
rule:

P(A1 ∩A2 ∩A3) = P(A1)P(A2|A1)P(A3|A1 ∩A2).

We have P(A1) = 39/52, since there are 39 cards that are not hearts in the 52-card deck.
Given that the first card is not a heart, we are left with 51 cards, 38 of which are not hearts,
and so P(A2|A1) = 38/51. Finally, given that the first two cards drawn are not hearts, there
are 37 cards which are not hearts in the remaining 50-card deck and P(A3|A1 ∩ A2) = 37/50.
The desired probability is then

P(A1 ∩A2 ∩A3) =
39

52
· 38

51
· 37

50
.

Exercise 2.5.8. Use the parallel approach to compute the probability in Example 2.5.7.

Example 2.5.9. An urn contains 10 white balls, 9 red balls and 8 black balls. Three balls are
removed. We assume that the removal of a ball (or a set of balls) is such that each ball (or
each set) has the same chance of being chosen. What is the probability that all chosen balls
are of different colors?



CHAPTER 2. PROBABILITY 24

Let’s adopt the parallel approach first by considering the balls to be removed simultane-
ously. The number of ways of choosing 3 balls of distinct colors is

(10
1

)(9
1

)(8
1

)
, whereas the num-

ber of ways of choosing 3 balls is
(27

3

)
. Therefore, the desired probability is

(10
1

)(9
1

)(8
1

)
/
(27

3

)
=

16/65.
We can check that the same result is obtained via the sequential approach by considering

the balls to be removed one at a time, without replacement. For i ∈ {1, 2, 3}, let Wi be the
event that the i-th ball chosen is white. Similarly, define Ri and Bi. The desired probability is
then

P((W1∩R2∩B3)∪(W1∩B2∩R3)∪(R1∩W2∩B3)∪(R1∩B2∩W3)∪(B1∩R2∩W3)∪(B1∩W2∩R3)).

But
P(W1 ∩R2 ∩B3) = P(W1)P(R2|W1)P(B3|W1 ∩R2) =

10

27
· 9

26
· 8

25
=

8

195
.

Similarly, for distinct i, j, k ∈ {1, 2, 3}, we have

P(Wi ∩Rj ∩Bk) =
8

195
.

Therefore, by finite additivity, the desired probability is 6 · 8
195 = 16

65 .

Definition 2.5.10. Given a countable infinite collection of events B1, B2, . . . , we say that the
collection is a partition of Ω if Bi ∩ Bj = ∅, for each i 6= j, and

⋃∞
i=1Bi = Ω. The same

definition applies mutatis mutandis in the case of a finite collection.

Lemma 2.5.11 (Law of total probability). Given a partitionB1, B2, . . . of Ω such that P(Bi) >
0 for each i, then

P(A) =
∞∑
i=1

P(A|Bi)P(Bi).

A similar result holds in case the collection B1, B2, . . . , Bn is finite.

Proof. By definition of partition of Ω, we have that
⋃∞
i=1Bi = Ω. Therefore,

P(A) = P(A∩Ω) = P
Å
A∩
Å ∞⋃
i=1

Bi

ãã
= P
Å ∞⋃
i=1

(A∩Bi)
ã

=
∞∑
i=1

P(A∩Bi) =
∞∑
i=1

P(A|Bi)P(Bi),

where the third equality follows from the distributive property, the fourth from countable
additivity for the probability measure P and the last from the definition of conditional proba-
bility.

Remark 2.5.12. The condition of positive probability may be omitted provided we agree to
interpret P(A|Bi)P(Bi) as 0 whenever P(Bi) = 0.

The law of total probability is typically used as follows. Suppose we want to compute the
probability that A occurs. Let B be another arbitrary event with 0 < P(B) < 1. There are
two scenarios: either B or Bc occurs. If we know the probability of the two scenarios and the
probability of A conditioned on each of them, then we can compute the probability of A.
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Example 2.5.13. Tomorrow there will be either rain or snow but not both; the probability
of rain is 2

5 and the probability of snow is 3
5 . If it rains, the probability that I will be late for

my lecture is 1
5 , while the corresponding probability in the event of snow is 3

5 . What is the
probability that I will be late?

Let A be the event that I am late and let B be the event that it rains. The pair B,Bc is
a partition of the sample space (since exactly one of them must occur). By the Law of total
probability,

P(A) = P(A|B)P(B) + P(A|Bc)P(Bc) =
1

5
· 2

5
+

3

5
· 3

5
=

11

25
.

Example 2.5.14. An urn contains b black balls and r red balls. We draw two balls from the
urn without replacement. What is the probability that the second ball drawn is black?

Let A be the event that the second ball drawn is black and let B be the event that the first
ball drawn is black. Then

P(A) = P(A|B)P(B) + P(A|Bc)P(Bc) =
b− 1

b+ r − 1
· b

b+ r
+

b

b+ r − 1
· r

b+ r
=

b

b+ r
.

Lemma 2.5.15 (Bayes’ law). Let A and B be two events such that P(A),P(B) > 0. Then

P(A|B) =
P(B|A)

P(B)
· P(A).

Proof. Exercise!

Bayes’ law tells how to update the estimate of the probability of A when new evidence
restricts the sample space to B. The ratio P(B|A)/P(B) determines “how compelling the new
evidence is”.

Combining Bayes’ law with the law of total probability we obtain that, if B1, B2, . . . is a
partition of Ω such that P(Bi) > 0 for each i, then

P(Bi|A) =
P(A|Bi)P(Bi)

P(A)
=

P(A|Bi)P(Bi)∑∞
i=1 P(A|Bi)P(Bi)

.

Remark 2.5.16. Again, we can drop the assumption that the Bi’s have positive probability by
setting P(A|Bi)P(Bi) = 0 if P(Bi) = 0.

Example 2.5.17. Going back to Example 2.5.14, suppose we are told that the second ball is
black. What is the probability that the first ball was black?

Applying Bayes’ theorem,

P(B|A) =
P(A|B)P(B)

P(A|B)P(B) + P(A|Bc)P(Bc)
=

Å
b

b+ r
· b− 1

b+ r − 1

ãÅ
b

b+ r

ã−1

=
b− 1

b+ r − 1
.

Example 2.5.18. Consider a lab screen for a certain virus. A person that carries the virus is
screened positive in only 95% of the cases (5% chance of false negative). A person who does
not carry the virus is screened positive in 1% of the cases (1% chance of false positive). Given
that 0.5% of the population carries the virus, what is the probability that a person who has
been screened positive is actually a carrier?

We take Ω = {carrier, not carrier} × {+,−}. Let A be the event “the person is a carrier”
i.e., A = {carrier} × {+,−}, and let B be the event “the person was screened positive” i.e.,
B = {carrier, not carrier} × {+}. We are given the following information

P(A) = 0.005 P(B|A) = 0.95 P(B|Ac) = 0.01.
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Therefore, taking A,Ac as our partition of Ω, we have that

P(A|B) =
P(B|A)P(A)

P(B|A)P(A) + P(B|Ac)P(Ac)
=

0.95 · 0.005

0.95 · 0.005 + 0.01 · 0.995
≈ 1

3
.

Example 2.5.19. A random number N of dice is thrown. Let Ai be the event {N = i} and
suppose that P(Ai) = 1/2i (i ≥ 1). The sum of the scores is S. Compute P(N = 2|S = 4).

By Bayes’ law,

P(N = 2|S = 4) =
P(S = 4|N = 2)P(N = 2)

P(S = 4)
.

The (countable) family of events N = 1, N = 2, N = 3, . . . is a partition of Ω such that
P(N = i) = 1/2i > 0. Therefore, by the law of total probability,

P(S = 4) =
∞∑
i=1

P(S = 4|N = i)P(N = i).

However, only the first four terms of the sum are non-zero. Indeed, if i ≥ 5, then P(S =
4|N = i) = 0. Therefore, the desired probability is

P(N = 2|S = 4) =
P(S = 4|N = 2)P(N = 2)

P(S = 4)
=

P(S = 4|N = 2)P(N = 2)∑4
i=1 P(S = 4|N = i)P(N = i)

.

We are then left to compute P(S = 4|N = i), for i ∈ {1, 2, 3, 4}. Let’s consider P(S =
4|N = 3), the other cases being similar. This is the probability of getting a sum of 4 by
throwing 3 dice. As usual, label the dice 1, 2, 3 and let xi be the number on die i. There
are 63 possible outcomes and we need to count how many triples (x1, x2, x3) are such that
x1 + x2 + x3 = 4. Since each xi is at least 1, it is easy to see there are exactly 3 such triples,
namely (1, 1, 2), (1, 2, 1), (2, 1, 1). Therefore, P(S = 4|N = 3) = 3/63.

Exercise 2.5.20. Consider n indistinguishable balls randomly distributed in m boxes. What is
the probability that exactly k boxes remain empty?

Exercise 2.5.21. We roll a fair four-sided die. If the result is 1 or 2, we roll once more, otherwise
we stop. What is the probability that the total sum of our rolls is at least 4?

Exercise 2.5.22. An urn contains b blue balls and c cyan balls. A ball is drawn at random,
its color noted and it is returned to the urn together with d further balls of the same color. The
process is repeated indefinitely.

• Compute the probability that the second ball drawn is cyan.

• Compute the probability that the first ball drawn is cyan given that the second ball drawn
is cyan.

Exercise 2.5.23. You are travelling on a train with your sister. Neither of you has a valid ticket,
and the inspector has caught you both. He is authorized to administer a special punishment for
this offence. He holds a box containing nine apparently identical chocolates, three of which are
contaminated with a deadly poison. He makes each of you, in turn, choose and immediately eat
a single chocolate.

(a) If you choose before your sister, what is the probability that you will survive?
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(b) If you choose first and survive, what is the probability that your sister survives?

(c) If you choose first and die, what is the probability that your sister survives?

(d) Is it in your best interests to persuade your sister to choose first?

(e) If you choose first, what is the probability that you survive, given that your sister survives?

The following example shows that an apparently irrelevant information might change
probabilities in surprising ways.

Example 2.5.24 (The two children paradox). Consider the three statements:

(a) I have two children, the elder of whom is a boy;

(b) I have two children, one of whom is a boy;

(c) I have two children, one of whom is a boy born on a Thursday.

What is the probability that both children are boys in the case (a), (b) and (c)?
Since we have no further information, we will assume all outcomes are equally likely.

Write BG for the event that the elder is a boy and the younger a girl (similar definitions for
GB and BB). Write GT for the event that the elder is a girl and the younger a boy born on
a Thursday, and write TN for the event that the elder is a boy born on a Thursday and the
younger a boy born on another day (similar definitions for NT , TT and TG). Then

(a) P(BB|BG ∪BB) = 1/2;

(b) P(BB|BB ∪BG ∪GB) = 1/3;

(c) P(NT ∪ TN ∪ TT |NT ∪ TN ∪ TT ∪ TG ∪GT ) = 13/27,

where in (c) we used the fact that

P(NT ∪ TN ∪ TT ) =
6

14
· 1

14
+

1

14
· 6

14
+

1

14
· 1

14

and

P(NT ∪ TN ∪ TT ∪ TG ∪GT ) =
6

14
· 1

14
+

1

14
· 6

14
+

1

14
· 1

14
+

1

14
· 7

14
+

7

14
· 1

14
.

Thus, learning about the gender of one child biases the probabilities for the other. Also,
learning a seemingly irrelevant additional fact pulls the probabilities back towards evens.

Example 2.5.25 (Simpson’s paradox). Given two events A and B with P(B) > 0, we say
that B attracts A if P(A|B) > P(A). For a further event S with P(B ∩ S) > 0, we say that
B attracts A on S if P(A|B ∩ S) > P(A|S). With this terminology, we might expect that if B
attracts A both on S and on Sc, then B attracts A. The following example shows that this is
false.

The interval Ω = (0, 1] can be equipped with a probability measure P such that P((a, b]) =
b − a for all 0 ≤ a ≤ b ≤ 1. For ε ∈ (0, 1/4), define the events A = (ε/2, 1/2 + ε/2],
B = (1/2− ε/2, 1− ε/2], S = (0, 1/2], Sc = (1/2, 1].
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Clearly, S and Sc are disjoint events such that S ∪ Sc = Ω. We claim that B attracts A on
S and on Sc and yet B does not attract A. Indeed,

P(A|B ∩ S) =
P(A ∩B ∩ S)

P(B ∩ S)
= 1 > P(A|S) = 1− ε,

P(A|B ∩ Sc) =
P(A ∩B ∩ Sc)
P(B ∩ Sc)

=
ε

1− ε
> P(A|Sc) = ε.

On the other hand,

P(A|B) =
P(A ∩B)

P(B)
= 2ε < P(A).

The paradoxical outcome comes from the fact that while P(A) = 1/2, P(A|B) = 2ε, so condi-
tioning on B significantly alters the probability of A.

More generally, Simpson’s paradox refers to any instance where a positive (or negative)
association between events, when conditioned by the elements of a partition, is reversed when
the same events are considered without conditioning. As a concrete example of this, consider
vaccine effectiveness vs severe disease for COVID-19.

Figure 2.3: Vaccine effectiveness vs severe disease (Israeli data from https://www.covid-datascience.com).

Looking at the table above, one can notice that effectiveness is quite high in both < 50 and
> 50 cohorts. However, these effectiveness levels are much higher than the 67.5% estimate
we get if the analysis is not stratified by age. This discrepancy is an instance of the Simpson’s
paradox: misleading results can sometimes be obtained from observational data in the pres-
ence of confounding factors. In our case, age is a confounding factor. It is the fact that both
vaccination status and risk of severe disease are systematically higher in the older age group
that makes overall effectiveness numbers if estimated without stratifying by age misleading,
producing a paradoxical result.

Exercise 2.5.26. We have a box with 15 balls, some of which are red and the rest are blue. We
pick a ball at random, note its color and put it back together with an additional ball of the same
color. Then we pick a ball again. How many blue balls were in the box initially if the ball we pick
the second time is blue with probability 1/3?

Exercise 2.5.27. A box contains two double-headed coins, one double-tailed coin and two fair
coins. You shut your eyes and pick a coin from the box.

(a) What is the probability that you picked a double-headed coin?

https://www.covid-datascience.com/post/israeli-data-how-can-efficacy-vs-severe-disease-be-strong-when-60-of-hospitalized-are-vaccinated
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(b) You toss the coin. What is the probability that it shows heads?

(c) You open your eyes and see that the coin shows heads. What is the probability that it is a
double-headed coin?

(d) You shut your eyes and toss the coin again. What is the probability that it shows heads?

(e) You open your eyes and see that the coin shows heads again. What is the probability that
it is a double-headed coin?

(f) You throw the coin away, shut your eyes and pick a new coin from the box. What is the
probability that it is a double-headed coin?

(g) You toss the coin. What is the probability that it shows heads?

2.6 Independence

In general, the occurence of some event B changes the probability that a certain event A
occurs, the original P(A) being replaced by P(A|B). If the probability remains unchanged
i.e., P(A|B) = P(A), then we call A and B independent. Since in order to talk about P(A|B)
we need P(B) > 0, we give the following more general definition which agrees with this
special case.

Definition 2.6.1. The events A and B are independent if P(A ∩ B) = P(A)P(B). More
generally, a family of events {Ai : i ∈ I} is independent if P(

⋂
i∈J Ai) =

∏
i∈J P(Ai) for each

finite subset J of I. A family {Ai : i ∈ I} is pairwise independent if P(Ai∩Aj) = P(Ai)P(Aj)
for each i 6= j.

If the occurrence of two events is governed by distinct and non-interacting processes,
such events will turn out to be independent: This will be our modelling assumption.

Independence is not easily visualized in terms of the sample space. A common first thought
is that two events are independent if they are disjoint, but in fact the opposite is true: two
disjoint events A and B with P(A) > 0 and P(B) > 0 are never independent as P(A ∩ B) =
0 6= P(A)P(B).

Example 2.6.2. Roll two dice and let A be the event “the first die is 4”. Let B1 be the event
“the second die is 2”. This satisfies our intuitive notion of independence since the outcome of
the first dice roll has nothing to do with that of the second. To check independence, note that
P(B1) = 1/6 = P(A) and P(A ∩B1) = 1/36.

Let B2 be the event “the sum of the two dice is 3”. Since A ∩ B2 = ∅, we have that
P(A ∩B2) = 0 < P(A)P(B2) and so the events cannot be independent.

Let B3 be the event “the sum of the two dice is 7”. This time, A and B3 are independent.
Indeed, we have that P(B3) = 6/36 and P(A ∩B3) = 1/36.

Let B4 be the event “the sum of the two dice is 9”. We have that A and B4 are not
independent. Indeed, P(A ∩B4) = 1/36 but P(A)P(B4) = 1/6 · 4/36.

Remark 2.6.3. Independence is stronger than pairwise independence: Any independent fam-
ily is clearly pairwise independent but the converse is not true. Indeed, toss two coins and
consider the events “first coin gives H”, “second coin gives H”, “resulting number of heads is
odd”. They form a family which is pairwise independent but not independent.
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Exercise 2.6.4. LetA andB be events satisfying P(A),P(B) > 0 and such that P(A|B) = P(A).
Show that P(B|A) = P (B).

Exercise 2.6.5. Two fair dice are thrown. Let A be the event that the first shows an odd number,
B be the event that the second shows an even number, and C be the event that either both are
odd or both are even. Show that A,B,C are pairwise independent but not independent.

Example 2.6.6 (De Méré’s paradox). Let A be the event of getting at least one six with one
throw of 4 fair dice and let B be the event of getting at least one double six with 24 throws of
2 fair dice? Which is more probable?

Let us first compute P(A). Label the dice 1, 2, 3, 4. For each i ∈ {1, 2, 3, 4}, let Ai be
the event of getting a six on die i when throwing the 4 dice. Clearly, P(Ai) = 1/6 and
P(Aci ) = 5/6. It is reasonable to assume that Ac1, A

c
2, A

c
3, A

c
4 is an independent family (we can

think of throwing 4 dice as four distinct and non-interacting processes). Therefore,

P(Ac) = P(Ac1 ∩Ac2 ∩Ac3 ∩Ac4) = P(Ac1)P(Ac2)P(Ac3)P(Ac4) =

Å
5

6

ã4

,

from which P(A) = 1− P(Ac) ≈ 0.5179.
Let us now compute P(B). For i ∈ {1, 2, . . . , 24}, let Bi be the event of getting a double

six on the i-th throw of 2 dice. Clearly, P(Bi) = 1/36 and P(Bc
i ) = 35/36. As above, it is

reasonable to assume independence of Bc
1, B

c
2, . . . , B

c
24. Therefore,

P(Bc) = P(Bc
1 ∩ · · · ∩Bc

24) = P(Bc
1) · · · · · P(Bc

24) =

Å
35

36

ã24

,

from which P(B) = 1− P(Bc) ≈ 0.4905.

Example 2.6.7 (Bernoulli trials). If an experiment involves a sequence of independent but
identical stages, we say that we have a sequence of independent trials. If there are only two
possible results at each stage, we say that we have a sequence of independent Bernoulli trials.

Consider an experiment that consists of n independent tosses of a biased coin, in which
the probability of H is p, for some p ∈ [0, 1]. What is the probability of getting exactly k
heads?

LetAi be the event “the i-th toss isH”. Independence means that the eventsA1, A2, . . . , An
are independent (the occurrence of any of them is governed by distinct and non-interacting
processes). Consider for example the outcome in which we have k heads followed by n − k
tails i.e., the elementary event A1 ∩ A2 ∩ · · · ∩ Ak ∩ Ack+1 ∩ · · · ∩ Acn. Intuitively, the family
A1, A2, . . . , Ak, A

c
k+1, . . . , A

c
n is independent1, as we will shortly show, and so we have that

P(A1∩A2∩· · ·∩Ak∩Ack+1∩· · ·∩Acn) = P(A1)P(A2) · · ·P(Ak)P(Ack+1) · · ·P(Acn) = pk(1−p)n−k.

Moreover, any other elementary event consisting of k heads and n−k tails will have the same
probability. Therefore, by additivity, it is enough to count such elementary events. This is
equivalent to counting the number of subsets of size k (the trials giving head) of a set of size
n (the set of all trials). This number is

(n
k

)
and so the probability of getting exactly k heads isÇ

n

k

å
pk(1− p)n−k.

1Notice how this intuitively makes sense: if A and B are independent, the occurrence of B does not provide
any new information on the probability of A and so the non-occurrence of B should also provide no information
on the probability of A.
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As mentioned above, we now show that if A1, A2 . . . , An is an independent family then,
replacing Ai by Aci for some i, still gives an independent family. By possibly repeating the
argument, it is enough to show this for one value of i, say i = n. Therefore, we show the fol-
lowing: if A1, A2 . . . , An is an independent family, then A1, A2 . . . , An−1, A

c
n is an independent

family. Consider a subset J of A1, A2 . . . , An−1, A
c
n. If Acn /∈ J , then P(

⋂
A∈J A) =

∏
A∈J P(A)

by assumption. If Acn ∈ J then, by possibly relabelling indices we have that J is of the form
J = {A1, . . . , A`, A

c
n} for some ` ∈ {1, . . . , n− 1}. Letting B = A1 ∩ · · · ∩A`, we have that

P(A1 ∩ · · · ∩A` ∩Acn) = P(B ∩Acn)

= P(B \ (B ∩An))

= P(B)− P(B ∩An)

= P(B)− P(A1 ∩ · · · ∩A` ∩An)

= P(B)− P(A1) · · ·P(A`)P(An)

= P(B)− P(B)P(An)

= P(B)(1− P(An))

= P(B)P(Acn)

= P(A1) · · ·P(A`)P(Acn),

which is what we wanted to show.

Exercise 2.6.8. Suppose A and B are events and the probability of B is either zero or one.
Show that A and B are independent.

Exercise 2.6.9. Let A1, A2, . . . , Am be a family of independent events such that P(Ai) = p for
each i ∈ {1, . . . ,m}. Find the probability that

(a) none of the Ai’s occur;

(b) an even number of the Ai’s occur.

Example 2.6.10 (Gambler’s ruin). A man wants to buy a car at a cost of N units of money.
He starts with k units, for some 0 < k < N and tries to win the remainder by the following
gamble with his bank manager. He tosses a fair coin repeatedly and independently. If H
comes up, then the manager pays him one unit. If T comes up, then he pays the manager
one unit. He plays the game until one of two events occurs: either he runs out of money and
is bankrupted or he wins enough to buy the car. What is the probability that he is ultimately
bankrupted?

We want to compute the probability of the event Ak “bankrupted if starting with k units”.
Notice that P(A0) = 1 and P(AN ) = 0. Let B be the event “first toss is H”. The law of total
probability tells us that

P(Ak) = P(Ak|B)P(B) + P(Ak|Bc)P(Bc).

But if the first toss is H, he has k + 1 units and if the first toss is T , he has k − 1 units.
Since the tosses are independent, we have that P(Ak|B) = P(Ak+1) and P(Ak|Bc) = P(Ak−1).
Therefore, letting pk = P(Ak), we have that

pk =
1

2
(pk+1 + pk−1), (2.3)
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with p0 = 1 and pN = 0. We want to compute the value of pk by using this recurrence
relation together with the two “boundary conditions”. Observe first that, by Equation (2.3),
the difference between consecutive pk ’s is always the same: pk − pk−1 = pk+1 − pk. Letting
bk = pk − pk−1 this common value, we have that bk = b1 and so

pk = b1 + pk−1 = b1 + (b1 + pk−2) = · · · = kb1 + p0.

Substituting N for k, we get 0 = pN = Nb1 + p0 = Nb1 + 1, from which b1 = −1/N and so
pk = 1− k/N .

Notice that, for each fixed k, the probability pk he is bankrupted starting with k units tends
to 1 as N →∞.

Exercise 2.6.11. In this exercise we consider gambler’s ruin in the case the coin has probability
p of getting heads and probability q of getting tails, where p + q = 1 and p 6= 1/2. Using the
previous notation, proceed as follows (each step is deduced from the previous):

• Show that pk = p · pk+1 + q · pk−1;

• Deduce that
pk+1 − pk =

q

p
· (pk − pk−1);

• Deduce that

bk =

Å
q

p

ãk−1

· b1;

• Conclude that

pk = 1−
1−

( q
p

)k
1−

( q
p

)N .
Remark 2.6.12. Let’s make a comment about the previous exercise in the realistic situation
that our gambler plays against a gambling machine. Gambling machines in most countries
permit by law a certain degree of “unfairness” by taking p < 1/2. This allows the house to
make an income. Suppose that p = 0.47 and that the gambler starts with 10 units and aims
at reaching 20 units. The probability he is bankrupted turns out to be roughly 77% (check it
yourself!). Therefore, a “slightly unfair” game at each round can become devastatingly unfair
in the long run.



Chapter 3

Random variables

Most of the times we are not interested in an experiment itself but rather in some consequence
of its random outcome. A random variable can be thought of as a numerical “summary” of a
certain aspect of the experiment. It is nothing but a function from the sample space Ω to the
real line R, where the “random” in the name comes from the experiment:

1. Chance determines the random outcome ω ∈ Ω;

2. The outcome ω determines a certain quantity of interest.

In other words, a random variable X represents an unknown quantity that varies with
the outcome of a random event. Before the random event, we know which values X could
possibly assume, but we do not know which one it will take until the random event happens.
The terminology may appear confusing: a variable is a function? This is because the words
“random variable” were in use long before the connection between probability and analysis
was discovered.

Example 3.0.1. Consider the experiment of tossing a coin twice. We can take as sample
space Ω = {HH,HT, TH, TT}. For any outcome ω ∈ Ω, we let X(ω) be the number of heads
in the outcome. Therefore, X(HH) = 2, X(HT ) = X(TH) = 1 and X(TT ) = 0.

Example 3.0.2. Consider the experiment of throwing a fair die once. We can take Ω =
{1, 2, 3, 4, 5, 6}. Suppose that we gamble on the outcome of the experiment in such a way that
the profit is

− 1 if the outcome is in {1, 2, 3};
0 if the outcome is 4;

2 if the outcome is in {5, 6};

where negative profits are positive losses. If the outcome is ω, then our profit is X(ω), where
X : Ω→ R is defined by X(1) = X(2) = X(3) = −1, X(4) = 0, X(5) = X(6) = 2.

Crucially, the function X : Ω → R has to be sufficiently well-behaved so that we can talk
about probabilities with which X assumes certain values:

Definition 3.0.3. A random variable is a function X : Ω → R such that {ω ∈ Ω : X(ω) ≤
x} ∈ F for each x ∈ R. We denote by Im(X) the image of X i.e., the values taken by X.

Remark 3.0.4. Notice that whenever we talk about a random variable we implicitly assume
an underlying probability space (Ω,F ,P).

33
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Figure 3.1: Visualization of a random variable X and the property {ω ∈ Ω : X(ω) ≤ x} ∈ F .

Example 3.0.5. Let (Ω,F ,P) be a probability space, where F is the power set of Ω. Then
obviously any function X : Ω→ R is a random variable. Recall that if Ω is countable, we can
always take its power set as our σ-field F .

In general, the numerical value of a random variable is more likely to lie in certain subsets
of R, depending on the probability space (Ω,F ,P) and the function X itself. The following
notion describes the distribution of the likelihoods of possible values of X. As mentioned
above, it is the reason behind the technical requirement {ω ∈ Ω : X(ω) ≤ x} ∈ F in the
definition of random variable.

Definition 3.0.6. The distribution function of a random variableX is the function FX : R→
[0, 1] given by FX(x) = P(X ≤ x). Here and in the following we use the shorthands X ≤ x or
{X ≤ x} for the event {ω ∈ Ω : X(ω) ≤ x}.

We are interested in two types of random variables:

Definition 3.0.7. The random variable X is discrete if it takes values in some countable
subset of R. The probability mass function (pmf) of a discrete random variable X is the
function fX : R→ [0, 1] given by fX(x) = P(X = x).

The random variable X is continuous if its distribution function can be expressed as

FX(x) = P(X ≤ x) =

∫ x

−∞
fX(u) du

for some integrable function fX : R → [0,∞) called the probability density function (pdf)
of X.

Remark 3.0.8. We will sometimes drop the subscript X in FX or fX when it is clear to which
random variable we are referring.

Remark 3.0.9. The definition of random variable requires that {X ≤ x} ∈ F for each x ∈ R.
But what about {X = x}? It turns out that, since {x} is a Borel set (Example 2.1.15),
Theorem 3.0.33 will indeed imply that {X = x} ∈ F for each x ∈ R and so it makes sense to
write P(X = x).

The name continuous comes from the fact (a generalization of the Fundamental theorem
of calculus) that the function FX defined by FX(x) =

∫ x
−∞ fX(u) du is continuous. This is in

sharp contrast to discrete random variables, whose distribution functions are never continu-
ous (only right-continuous as we will see shortly).
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Remark 3.0.10. Observe that, knowing the probability mass function of a discrete random
variable, we can immediately compute its distribution function using countable additivity.
Indeed,

{X ≤ x} =
⋃

k: k≤x and k∈Im(X)

{X = k},

where the union is countable as Im(X) is countable, and so

FX(x) = P(X ≤ x) =
∑

k: k≤x and k∈Im(X)

P(X = k) =
∑

k: k≤x and k∈Im(X)

fX(k).

Example 3.0.11. Let us compute the probability mass function and the distribution function
of the discrete random variable in Example 3.0.1. In view of Remark 3.0.10, we start with
the pmf. The values taken by X are 0, 1, 2 and the pmf fX is given by fX(0) = P(TT ) = 1/4,
fX(1) = P(HT ∪ TH) = 1/2 and fX(2) = P(HH) = 1/4. For all x /∈ {0, 1, 2}, we have
fX(x) = 0. Obtained the pmf, it is now easy to compute the distribution function:

FX(x) = P(X ≤ x) =


0 if x < 0;

1/4 if 0 ≤ x < 1;

3/4 if 1 ≤ x < 2;

1 if x ≥ 2.

In order to compute the pmf of a discrete random variable X, do the following. For
each possible value x of X:

1. Collect all the possible outcomes that give rise to the event {X = x};

2. Add their probabilities to obtain fX(x).

Example 3.0.12 (Uniform random variable). The random variable X is uniform on [a, b] if
it has distribution function

F (x) = P(X ≤ x) =


0 if x < a;
x− a
b− a

if a ≤ x ≤ b;

1 if x > b.

Such a random variable X is continuous, as it admits probability density function given by

f(x) =


1

b− a
if a ≤ x ≤ b;

0 otherwise.

The idea here is that we are picking a value “at random” from [a, b] (values outside the in-
terval are impossible, and all those inside have the same probability density). Therefore, the
probability that X ≤ c for some c ∈ [a, b] should intuitively be c−a

b−a .

If the distribution function FX of a continuous random variable X is differentiable at
some x ∈ R, the value fX(x) of the probability density function at x can be found by
taking the derivative of FX at x.
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1 20 a b

1 1

Figure 3.2: Distribution function of the discrete random variable in Example 3.0.1 (left) and of the uniform
random variable on [a, b] (right).

Before providing several examples of important discrete random variables, we make the
following observation. If X is a discrete random variable with pmf fX then, by definition,
Im(X) is a countable subset of R. Moreover, the following two properties hold:

fX(x) ≥ 0 for each x ∈ R and fX(x) = 0 if x /∈ Im(X), (3.1)

∑
x∈Im(X)

fX(x) = P
Å ⋃
x∈Im(X)

{ω ∈ Ω : X(ω) = x}
ã

= P(Ω) = 1. (3.2)

Equation (3.2) is sometimes written as
∑

x∈R fX(x) = 1 in light of the fact that only countably
many values of x make non-zero contributions to this sum. The two properties above essen-
tially characterize mass functions of discrete random variables in the sense of the following
theorem.

Theorem 3.0.13. Let S = {si : i ∈ I} be a countable set of distinct real numbers and let
{πi : i ∈ I} be a collection of real numbers satisfying

πi ≥ 0 for each i ∈ I, and
∑
i∈I

πi = 1. (3.3)

Then there exists a probability space (Ω,F ,P) and a discrete random variable X on (Ω,F ,P)
such that the pmf of X is given by fX(si) = πi for i ∈ I, and fX(s) = 0 for s /∈ S.

Proof. Since S is countable, we can build our probability space as follows. We let Ω = S,
F = 2Ω and, for each A ∈ F , we define

P(A) =
∑

i: si∈A
πi.

It is easy to see that such a P is a probability measure on (Ω,F). Finally, we define our discrete
random variable X as the function X : Ω → R given by X(ω) = ω for each ω ∈ Ω. For i ∈ I,
we have that fX(si) = P(X = si) = πi, whereas for s /∈ S, we have that fX(s) = P(X = s) =
P(∅) = 0, as desired.

Theorem 3.0.13 is very useful, since for many purposes it allows us to forget about prob-
ability spaces: it is enough to say “let X be a random variable taking the value si with proba-
bility πi and satisfying (3.3)” and we can be sure that such a random variable exists without
having to construct it explicitly. This reasoning can be applied in order to check that the
examples below provide indeed (discrete) random variables.
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Example 3.0.14 (Constant random variable). Let c ∈ R and let X : Ω→ R be the function
given by X(ω) = c for each ω ∈ Ω. This is a random variable with pmf

fX(x) = P(X = x) =

®
0 if x 6= c;

1 if x = c.

and distribution function

FX(x) = P(X ≤ x) =

®
0 if x < c;

1 if x ≥ c.

Example 3.0.15 (Bernoulli random variable). A coin is tossed once and let p be the prob-
ability of H. Let X be 1 if the toss gives H and 0 otherwise. This is a random variable with
pmf

fX(x) = P(X = x) =


1− p if x = 0;

p if x = 1;

0 otherwise.

and distribution function

FX(x) = P(X ≤ x) =


0 if x < 0;

1− p if 0 ≤ x < 1;

1 if x ≥ 1.

We refer to X as a Bernoulli random variable with parameter p, denoted X ∼ Bernoulli(p).
In practice, the Bernoulli random variable is used to model probabilistic situations with just
two outcomes, such as:

(a) The state of a telephone at a given time that can be either free or busy;

(b) A person who can be either healthy or sick with a certain disease;

(c) The preference of a person who can be either for or against a certain political candidate.

Moreover, we will see how more complicated random variables can be obtained by combining
multiple Bernoulli random variables.

Example 3.0.16 (Binomial random variable). A coin is tossed n times. At each toss, the
coin gives H with probability p, independently of prior tosses. Let X be the number of heads
in the n-toss sequence. We refer to X as a binomial random variable with parameters (n, p),
denoted X ∼ Binomial(n, p). We essentially already computed its pmf in Example 2.6.7. It
is given by

fX(k) = P(X = k) =

Ç
n

k

å
pk(1− p)n−k,

for k ∈ {0, 1, . . . , n}. Instead of tossings of a coin, we can more generally take n independent
Bernoulli trials with probability p of success.

The Binomial theorem implies that fX is a legitimate pmf. Indeed,

n∑
k=0

fX(k) =

n∑
k=0

Ç
n

k

å
pk(1− p)n−k = (p+ (1− p))n = 1.
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Figure 3.3: The pmf of a binomial random variable. If p = 1/2, the pmf is symmetric around n/2. Otherwise, it
is skewed towards 0 if p < 1/2, and towards n if p > 1/2.

Example 3.0.17 (Geometric random variable). Suppose that we repeatedly and indepen-
dently toss a coin with probability p of getting H. The geometric random variable is the
number X of tosses needed for a head to come up for the first time. Its pmf is given by

fX(k) = P(X = k) = (1− p)k−1p,

for k = 1, 2, . . . . We refer to such an X as a geometric random variable with parameter p,
denoted X ∼ Geometric(p). Notice that fX(k) gives indeed the pmf of a discrete random
variable as fX(k) ≥ 0 for k = 1, 2, . . . and

∞∑
k=1

fX(k) =
∞∑
k=1

(1− p)k−1p = p
∞∑
k=1

(1− p)k−1 = p · 1

1− (1− p)
= 1,

where in the last equality we used the sum of a geometric series.
More generally, we can interpret the geometric random variable in terms of repeated

independent trials until the first “success”. Each trial has probability p of success and the
number of trials until (and including) the first success is modeled by the geometric random
variable.

Example 3.0.18 (Poisson random variable). A random variable X is said to be Poisson
with parameter λ > 0, denoted X ∼ Poisson(λ), if it has pmf given by

fX(k) = P(X = k) = e−λ
λk

k!
,

for k = 0, 1, 2, . . . . Notice that this gives indeed the pmf of a discrete random variable as
fX(k) ≥ 0 for k = 0, 1, . . . and

∞∑
k=0

fX(k) =

∞∑
k=0

e−λ
λk

k!
= e−λ

∞∑
k=0

λk

k!
= e−λ · eλ = 1,



CHAPTER 3. RANDOM VARIABLES 39

where in the last equality we used the definition of eλ.
How does a Poisson random variable with parameter λ arise? It turns out that it is a limit

of a binomial random variable with parameters (n, λ/n). Indeed,Ç
n

k

åÅ
λ

n

ãkÅ
1− λ

n

ãn−k
=
λk

k!

n(n− 1) · · · (n− k + 1)

nk

Å
1− λ

n

ãn−k
=
λk

k!

Å
1− 1

n

ã
· · ·
Å

1− k − 1

n

ã(
1− λ

n

)n(
1− λ

n

)k
and for any fixed k, taking the limit n → ∞, we have that the quantity above tends to
e−λ λ

k

k! . In other words, a Poisson random variable with parameter λ approximates a binomial
random variable with parameters (n, p) provided λ = np, n is large and p is small. It appears
abundantly in life, for example, when counting the number of radio-active decays in a unit of
time or the number of cars involved in accidents in a city on a given day.

Example 3.0.19 (Negative binomial random variable). Consider a sequence of indepen-
dent Bernoulli trials with probability p of success. The negative binomial random variable is
the number X of trials required to achieve a number r of successes. Therefore, the values
taken by X are r, r + 1, r + 2, . . .. Since {X = x} if and only if we have r − 1 successes in
the first x− 1 trials and a success at the x-th trial, then independence implies that the pmf is
given by

P(X = x) =

Ç
x− 1

r − 1

å
pr−1(1− p)(x−1)−(r−1) · p =

Ç
x− 1

r − 1

å
pr(1− p)x−r,

for x = r, r + 1, . . . .

Let X be a random variable and let A ⊆ R. How can we compute probabilities of the
form P(X ∈ A) (assuming for the moment X ∈ A is indeed an event)? If X is described both
in terms of an underlying experiment and via its pmf, then we can typically proceed in two
different ways, as shown in the following example.

Example 3.0.20. Let X ∼ Geometric(p). Compute P(X > k).

P(X > k) = 1− P(X ≤ k) = 1−
k∑
i=1

P(X = i) = 1−
k∑
i=1

(1− p)i−1p

= 1− p
k∑
i=1

(1− p)i−1

= 1− p · 1− (1− p)k

1− (1− p)
= (1− p)k,

where in the second equality we used finite additivity and in the fifth the formula for a geo-
metric progression.

Alternatively, we can use the experimental description of X. The event {X > k} coincides
with the event that the first k tosses are all tails and so, by independence, P(X > k) = (1−p)k.

Exercise 3.0.21. Determine whether the following functions f : N→ [0, 1] are probability mass
functions of a discrete random variable:
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• f(x) = 1
x(x+1) ;

• f(x) = 4
x(x+1)(x+2) .

Exercise 3.0.22. An airplane engine breaks down during a flight with probability 1 − p. An
airplane lands safely only if at least half of its engines are functioning upon landing. What is
preferable: a two-engine airplane or a four-engine airplane?

Exercise 3.0.23. There are n white balls and m black balls in an urn. Each time, we take out
one ball (with replacement) until we have a black ball. What is the probability that we need at
least k trials?

One might worry that the condition in the definition of a random variable is too stringent.
Luckily, this is not the case: almost all reasonable functions turn out to be random variables.
We now provide several ways of construting new random variables.

Since real numbers have addition and multiplication, we can perform such operations on
real-valued functions pointwise. If f1, f2 : Ω → R are two functions, then the pointwise sum
f1 + f2 : Ω → R is defined by (f1 + f2)(ω) = f1(ω) + f2(ω) for each ω ∈ Ω. We define the
pointwise product f1f2 and the pointwise scalar λf1 similarly.

Proposition 3.0.24. Let X and Y be random variables and let λ ∈ R. The following are
random variables:

(a) λX;

(b) X + Y ;

(c) XY ;

(d) Z(ω) =

®
Y (ω)/X(ω) if X(ω) 6= 0;
0 if X(ω) = 0.

(e) max{X,Y };

(f) min{X,Y }.

Proof. We prove only (b) as the other proofs are similar. We need to show that {ω : X(ω) +
Y (ω) ≤ x} ∈ F for each x ∈ R. Since σ-fields are closed under complementation, it is then
enough to show that {ω : X(ω) + Y (ω) > x} ∈ F for each x ∈ R. Observe that, since there
exists a rational number between any two real numbers, we have

{ω : X(ω) + Y (ω) > x} =
⋃
r∈Q
{ω : X(ω) > r, Y (ω) > x− r}.

But for fixed r and x, {ω : X(ω) > r} ∈ F and {ω : Y (ω) > x − r} ∈ F , as X and Y are
random variables. Therefore their intersection {ω : X(ω) > r, Y (ω) > x − r} belongs to F
and hence the countable union

⋃
r∈Q{ω : X(ω) > r, Y (ω) > x− r} belongs to F as well.

Example 3.0.25. A binomial random variable with parameters (n, p) is a sum of n Bernoulli
random variables each with parameter p.
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Consider a probability model of today’s weather and let the random variable X be the
temperature in degrees Celsius. The transformation Y = 1.8X + 32 gives the temperature
in degrees Fahrenheit. In this case, Y is a linear function of X but we may also consider
nonlinear functions. For example, if we wish to display temperatures on a logarithmic scale,
we would want to use the function Y = log(X).

More generally, given a random variable X : Ω → R, and a function g : R → R, we can
consider the composition function Y = g(X) of g afterX i.e., the function Y : Ω→ R mapping
ω ∈ Ω to g(X(ω)) ∈ R. It turns out that if g is continuous, we obtain another random variable:

Theorem 3.0.26. Let X be a random variable and g : R → R a continuous function. Then
Y = g(X) is a random variable.

Example 3.0.27. Let X be a random variable. Then sin(X), eX , log(X), Xn are all random
variables.

Example 3.0.28. Consider the experiment of repeatedly and independently tossing a coin
with probability p of getting H. We know that the number of tosses until the first H appears
is a geometric random variable with pmf given by

fX(k) = P(X = k) = (1− p)k−1p,

for k = 1, 2, . . . . Let now Y be the number of T before the first H. Then Y = X− 1 is another
random variable whose pmf can be easily computed from that of X as follows:

fY (k) = P(Y = k) = P(X = k + 1) = (1− p)kp,

for k = 0, 1, 2, . . . .

Example 3.0.29. Consider again the discrete random variable X in Example 3.0.1. It takes
values 0, 1, 2 and its pmf is given by fX(0) = 1/4, fX(1) = 1/2 and fX(2) = 1/4. Then
Y = g(X) = (X − 1)2 is another discrete random variable taking values in 0, 1. The pmf of Y
is given by

fY (0) = P(Y = 0) = P(X = 1) = 1/2,

fY (1) = P(Y = 1) = P({X = 0} ∪ {X = 2}) = P(X = 0) + P(X = 2) = 1/4 + 1/4 = 1/2,

where we have used finite additivity.

We now observe some properties that the distribution function of a generic random vari-
able satisfies. Hence the following result holds for both discrete and continuous random
variables.

Lemma 3.0.30. The distribution function F of a random variable X satisfies the following
properties:

(a) It is monotonically increasing i.e., if x ≤ y, then F (x) ≤ F (y).

(b) limx→−∞ F (x) = 0 and limx→∞ F (x) = 1.

(c) It is right-continuous i.e., F (x+ h)→ F (x) as h tends to 0 from the positive side.

Proof. We show only (a). If x ≤ y, then {ω : X(ω) ≤ x} ⊆ {ω : X(ω) ≤ y)} and so

F (x) = P({ω : X(ω) ≤ x}) ≤ P({ω : X(ω) ≤ y}) = F (y)

by monotonicity of probability. Notice that this also implies that the limits in (b) exist, as
0 ≤ F (x) ≤ 1 is bounded.
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A remarkable and reassuring fact is that the three properties in Lemma 3.0.30 in fact char-
acterize distribution functions of random variables, as shown by the following result which
can be seen as a generalization of Theorem 3.0.13 to generic random variables.

Theorem 3.0.31. Let F : R → R be a function satisfying (a), (b) and (c) in Lemma 3.0.30.
Then there exists a random variable X with distribution function F .

The result above tells us that instead of directly providing a random variable, we can
simply provide a function F : R → R satisfying (a), (b) and (c) in Lemma 3.0.30. Notice
that it justifies the existence of the uniform random variable on [a, b] (which was defined by
providing its distribution function).

Exercise 3.0.32. Determine whether the following functions F : R → R are distribution func-
tions of a random variable:

• F (x) = x2

1+x2
;

• F (x) = 1
π (arctan(x) + π

2 ).

It turns out that, for a random variable X, not only it makes sense to compute P(X ≤ x),
which is the same as P(X ∈ (−∞, x]), but also P(X ∈ A) for all Borel sets A ⊆ R. We first
need to check that indeed {X ∈ A} is an event whenever A is a Borel set. Recall that, in
particular, every open set in R is a Borel set and the family B of Borel sets is extremely rich.

Theorem 3.0.33. Let X be a random variable and let A ∈ B be a Borel set in R. Then {X ∈
A} ∈ F i.e., {X ∈ A} is an event.

Proof. We proceed as follows. We let G be the family of all A ⊆ R such that {X ∈ A} ∈ F and
show that G is a σ-field on R containing all open intervals in R. Since we know B is generated
by the open intervals (Proposition 2.1.13) and hence is the smallest σ-field on R containing
the open intervals, we obtain that B ⊆ G, as desired.

Since {a < X < b} ∈ F for each real numbers a < b (why?), G contains all open intervals.
It remains to check that G is indeed a σ-field on R. Clearly, R ∈ G, as {ω : X(ω) ∈ R} = Ω ∈ F .
Let now A ∈ G. Then {X ∈ A} ∈ F and so {X ∈ Ac} = {X ∈ A}c ∈ F as F is closed under
complementation. Suppose finally that A1, A2, . . . ∈ G. Then {X ∈

⋃
nAn} =

⋃
n{X ∈ An} ∈

F as F is closed under countable unions.

Corollary 3.0.34. Let X be a discrete random variable and let A ⊆ R be any set. Then {X ∈
A} ∈ F .

Proof. Since X is discrete, Im(X) is a countable set. We then write {X ∈ A} as a countable
union of members of F as follows:

{ω : X(ω) ∈ A} =
⋃

x∈A∩Im(X)

{ω : X(ω) = x}.

By Theorem 3.0.33, since X is a random variable and {x} is a Borel set, each set in the
countable union belongs to F . But since F is a σ-field, the countable union must belong to F
as well, as claimed.

We have seen that if X is a random variable and g : R → R is continuous, then g(X) is a
random variable. It turns out that if X is a discrete random variable, we can in fact compose it
with any function g to obtain a new (discrete) random variable, as the following result shows.
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Corollary 3.0.35. Let X be a discrete random variable and let g : R → R be an arbitrary
function. Then g(X) is a discrete random variable.

Proof. Clearly, g(X) takes countably many values, as X does. We then need to show that
g(X) is indeed a random variable, namely that for each x ∈ R, {ω ∈ Ω : g(X(ω)) ≤ x} ∈ F .
In order to do that, we simply write our set as a countable union of members of F :

{ω : g(X(ω)) ≤ x} =
⋃

c∈Im(X): g(c)≤x

{ω : X(ω) = c}.

By Theorem 3.0.33, since X is a random variable and {c} is a Borel set, each set in the
countable union belongs to F . But since F is a σ-field, the countable union must belong to F
as well.

Knowing the distribution function of a random variable X, it is easy to compute the prob-
abilities of the events {X > x} and {x ≤ X ≤ y}:
Lemma 3.0.36. Let F be the distribution function of the random variable X. Then

(a) P(X > x) = 1− F (x);

(b) P(x < X ≤ y) = F (y)− F (x).

Proof. (a) Since {X > x} = {X ≤ x}c, we have that

P(X > x) = 1− P(X ≤ x) = 1− F (x).

(b) Ω can be written as the disjoint union {X ≤ x} ∪ {x < X ≤ y} ∪ {X > y}. Therefore,
by finite additivity and (a),

1 = F (x) + P(x < X ≤ y) + (1− F (y)),

as claimed.

We somehow convinced ourselves that in the case of a discrete random variable X, the
probability mass function is more informative than the distribution function (see Remark 3.0.10).
As the following result shows, the probability mass function indeed captures all the informa-
tion in the probability space that is relevant to X: we can compute the probability of every
event defined just in terms of X by simply knowing the pmf of X.

Lemma 3.0.37. Let X be a discrete random variable with pmf f(x) and let A ⊆ R be any set.
Then

(a) The set {x ∈ R : f(x) 6= 0} is countable.

(b) P(X ∈ A) =
∑

x∈A f(x) where, in view of (a), the sum is understood to be a countable
sum (it contains only countably many non-zero terms).

Proof. (a) It follows from the fact that X takes countably many values.
(b) We have seen in the proof of Corollary 3.0.34 that we can write the event {X ∈ A} as

the countable union
{X ∈ A} =

⋃
x∈A∩Im(X)

{X = x}.

Countable additivity then implies that

P(X ∈ A) =
∑

x∈A∩Im(X)

P(X = x) =
∑
x∈A

P(X = x) =
∑
x∈A

f(x),

as claimed.
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The analogue of Lemma 3.0.37 and its consequences in the case of continuous random
variables are given by the following.

Lemma 3.0.38. If X is a continuous random variable with pdf f(x), then

(1) P(x < X ≤ y) =
∫ y
x f(u).

(2) P(X = x) = 0, for each x ∈ R.

(3) P(x < X ≤ y) = P(x ≤ X ≤ y) = P(x < X < y) = P(x ≤ X < y).

(4)
∫∞
−∞ f(u) = 1.

Loosely speaking, the reason behind (2) is that there are uncountably many possible values
for X and this number is so large that the probability of X taking any particular value is 0.

Proof. (1) By Lemma 3.0.36, definition of density function and additivity of integration, we
have

P(x < X ≤ y) = F (y)− F (x) =

∫ y

−∞
f(u)−

∫ x

−∞
f(u) =

∫ y

x
f(u).

(2) For each n ∈ N, we have that {X = x} ⊆ {x−1/n < X ≤ x}. Therefore, monotonicity
and (1) imply that

P(X = x) ≤ P
Å
x− 1

n
< X ≤ x

ã
=

∫ x

x− 1
n

f(u).

But
∫ x
x− 1

n
f(u) tends to 0 as n→∞.

(3) By finite additivity and (2),

P(x ≤ X ≤ y) = P(x < X ≤ y) + P(X = x) = P(x < X ≤ y).

The other equalities are proved similarly.
(4) By Lemma 3.0.30, limx→∞ F (x) = 1 and so

∫∞
−∞ f(u) = limx→∞ F (x) = 1.

Exercise 3.0.39. Let X be a random variable with distribution function

F (x) =


0 if x < 0;

x2 if 0 ≤ x ≤ 1;
1 if x > 1.

Is X discrete or continuous? Compute P(1/4 < X < 5), P(0.2 < X < 0.8) and P(X = 1/2).
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Discrete random variables

4.1 Expectation of discrete random variables

Suppose we have an experiment and a discrete random variable X arising from the experi-
ment. We repeat the experiment a large number N of times and record the N values taken by
X. Intuitively, we would expect that {X = x} occurs approximately P(X = x)N many times.
So the average of the values taken by X would approximately be∑

x xP(X = x)N

N
=

∑
x xfX(x)N

N
=
∑
x

xfX(x).

Definition 4.1.1. Let X be a discrete random variable with pmf fX(x). The expected value
(or expectation, or mean) of X, denoted by E(X), is

E(X) =
∑
x

xfX(x),

provided that
∑

x |xfX(x)| converges. We use again the convention that
∑

x xfX(x) denotes
the sum over the values of x for which fX(x) 6= 0. Hence we are dealing with either a finite
sum or the sum of a series, as X takes countably many values (see Lemma 3.0.37(a)).

Remark 4.1.2. Since the expectation is defined only if
∑

x |xfX(x)| converges, the expecta-
tion is a real number. Indeed, it can be shown that if

∑
x |xfX(x)| converges, then

∑
x xfX(x)

converges as well. However, asking only for convergence of
∑

x xfX(x) would not be enough
for our purposes. Indeed, the following undesirable behavior might occur: Given a series
and x ∈ R, there might exist a rearrangement1 of the series which converges to x. A famous
example is the so-called alternating harmonic series

∑∞
n=1

(−1)n+1

n : it converges to ln 2 but we
can rearrange its terms to make it convergent to any x ∈ R! Luckily, if the requirement in
Definition 4.1.1 holds, then all rearrangements converge to the same real number and we do
not have to worry about the order of summation.

We will soon give a precise mathematical meaning to the notion of expectation (thanks to
the Weak law of large numbers). For the time being, the intuitive idea of E(X) as the average
value of X in a long run of independent trials is enough.

1A rearrangement of a certain series is a series obtained by changing the order of summation of its terms.

45
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Example 4.1.3. Let X be the score obtained when throwing a fair die. Then

E(X) =

6∑
x=1

x · 1

6
=

1

6
(1 + 2 + 3 + 4 + 5 + 6) = 3.5.

Simulating 10, 100 and 1000 throws, we obtain the following averages of the scores:

3 1 4 6 6 6 1 3 6 1 10 Throws: average = 3.7

5 6 4 4 4 2 3 3 5 6
5 1 5 3 4 1 6 5 5 2
6 4 5 2 1 6 6 3 4 2
4 3 2 2 2 2 6 4 4 3
3 5 2 2 5 6 3 1 1 5
1 5 4 4 3 5 3 3 2 4
6 4 2 3 3 4 2 5 4 6
5 4 1 2 1 2 3 1 4 4
5 6 3 4 4 5 3 4 4 4
6 1 4 6 5 2 1 3 3 1

100 Throws: average = 3.54

3 3 6 5 6 1 6 1 2 5 3 1 2 3 3 2 3 2 5 2
6 4 3 6 3 3 2 4 2 3 6 6 3 6 2 4 4 5 3 1
5 1 2 5 6 4 1 3 6 5 2 6 5 4 6 4 3 5 6 2
5 5 6 1 5 1 1 2 5 1 6 6 5 1 4 2 5 3 4 4
6 3 5 6 5 4 3 5 3 1 5 4 3 2 5 3 6 4 3 3
6 5 4 3 6 6 3 5 4 4 4 3 1 4 5 3 5 4 1 6
4 6 5 4 1 2 2 1 3 5 1 3 5 6 6 2 3 2 4 4
4 3 1 6 2 1 1 4 5 6 6 4 3 3 4 5 4 4 1 4
5 1 4 3 1 2 3 1 1 3 2 1 5 4 3 2 4 6 2 4
5 4 4 3 4 2 3 4 4 5 3 6 5 2 2 6 2 5 6 6
6 3 1 6 4 1 6 5 6 6 6 2 2 5 5 1 3 2 2 4
3 2 4 2 6 2 2 3 2 6 5 2 1 4 6 1 1 1 3 4
1 6 4 1 4 1 5 6 4 5 4 6 4 2 2 6 6 2 3 1
3 3 3 6 4 6 5 1 3 5 5 5 3 3 5 6 4 4 5 4
4 4 1 3 4 3 3 2 5 5 4 2 5 5 3 5 4 3 1 2
6 6 4 5 1 2 5 6 2 4 3 5 1 6 6 2 1 3 2 6
5 2 2 3 1 3 2 1 6 5 4 5 6 4 3 4 3 2 6 1
5 1 5 5 5 1 2 6 3 5 2 3 6 1 4 3 1 4 5 6
1 6 2 1 4 4 1 2 4 4 5 4 1 2 6 1 2 2 5 3
2 2 3 6 1 5 3 2 5 4 1 1 2 4 2 5 3 3 4 2
2 6 3 2 2 6 3 5 2 5 3 6 1 5 2 3 1 2 1 5
5 2 3 5 3 1 6 2 5 6 5 3 1 5 6 3 4 1 2 4
3 4 2 6 6 2 5 1 4 1 4 1 1 1 4 1 1 1 3 5
1 2 1 5 2 6 6 6 2 1 6 3 5 3 5 2 6 2 1 2
5 4 5 6 6 4 4 4 3 1 3 1 4 2 5 5 4 6 1 5
2 1 3 5 5 3 4 2 3 2 4 3 4 4 4 3 5 6 4 4
4 1 5 4 1 5 5 3 1 6 3 6 1 1 6 6 4 1 5 1
4 2 6 3 4 2 1 4 1 3 1 2 2 4 4 3 6 4 1 4
4 3 3 5 5 6 4 4 5 2 4 2 3 2 6 6 2 5 6 6
4 2 5 6 4 4 1 1 4 2 2 4 2 4 4 4 5 5 2 1
3 3 4 1 5 5 2 1 3 3 4 4 4 4 6 6 1 6 4 2
5 2 5 3 1 3 5 1 3 6 5 5 4 1 4 4 4 6 1 6
1 2 2 4 6 2 4 3 1 6 2 5 6 2 4 1 1 1 2 5
6 4 4 1 6 3 5 3 3 6 3 5 3 2 3 3 6 1 6 6
2 6 1 4 6 3 5 4 3 4 4 4 6 6 1 5 4 1 4 4
3 5 2 1 3 2 3 3 4 6 2 3 6 6 6 5 2 1 2 2
2 3 2 5 3 4 2 5 3 6 5 3 3 4 6 3 3 1 2 1
2 4 2 1 4 5 3 4 4 1 2 5 4 5 3 1 3 6 5 4
5 2 6 3 4 1 2 5 4 3 1 2 6 3 6 3 6 4 5 4
5 1 1 2 6 6 3 2 6 2 3 1 4 1 5 5 3 1 1 4
1 5 2 6 2 1 4 4 4 1 2 1 3 4 1 6 2 4 5 4
6 5 5 6 6 1 4 1 3 2 4 4 1 6 4 1 1 5 6 4
2 3 5 1 3 4 6 3 6 2 3 6 3 4 4 1 1 2 1 4
3 2 3 4 6 6 2 6 6 1 3 6 2 2 6 3 4 6 3 6
2 2 3 5 3 4 1 4 1 2 4 6 5 2 1 1 6 2 2 6
1 1 3 4 4 3 2 6 6 3 5 4 4 6 2 2 2 6 1 5
1 4 3 2 1 1 1 5 3 3 2 4 1 6 1 4 6 6 1 1
6 2 2 6 1 2 4 3 6 2 6 2 3 1 2 6 1 5 2 1
5 1 1 5 1 4 3 2 6 1 3 1 6 3 5 2 3 4 4 5
4 3 1 1 4 1 5 3 3 4 5 1 3 4 1 6 5 1 1 1

1,000 Throws: average =
3.47
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It appears that the larger the number of throws, the closer the average is to the actual
value of the expectation of X.

Example 4.1.4. Let X ∼ Bernoulli(p). Then

E(X) = 1 · P(X = 1) + 0 · P(X = 0) = p.

Example 4.1.5. Let X ∼ Binomial(n, p). Then

E(X) =
n∑
k=0

k

Ç
n

k

å
pk(1− p)n−k

=
n∑
k=0

k · n!

k!(n− k)!
pk(1− p)n−k

= np
n∑
k=1

Ç
n− 1

k − 1

å
pk−1(1− p)(n−1)−(k−1)

= np

n−1∑
j=0

Ç
n− 1

j

å
pj(1− p)(n−1)−j

= np,

where in the fourth equality we used the change of variable j = k − 1 and in the last the
Binomial theorem.

Example 4.1.6. Let X ∼ Poisson(λ). Then

E(X) =
∞∑
k=0

k · e
−λλk

k!
= λe−λ

∞∑
k=1

λk−1

(k − 1)!
= λe−λ

∞∑
j=0

λj

j!
= λe−λ · eλ = λ,

where in the third equality we used the change of variable j = k − 1 and in the last the
definition of eλ.

Example 4.1.7. Let X ∼ Geometric(p). Then

E(X) =

∞∑
k=1

k(1− p)k−1p = p+

∞∑
k=2

k(1− p)k−1p

= p+

∞∑
s=1

(s+ 1)(1− p)sp

= p+
∞∑
s=1

s(1− p)sp+
∞∑
s=1

(1− p)sp

= p+ (1− p)
∞∑
s=1

s(1− p)s−1p+ p(1− p)
∞∑
s=1

(1− p)s−1

= p+ (1− p)E(X) + p(1− p) · 1

1− (1− p)
,

where in the third equality we used the change of variable s = k−1 and in the last equality we
used the formula for the sum of a geometric series. Solving for E(X), we obtain E(X) = 1/p.
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Exercise 4.1.8. Let X and Y be discrete random variables with pmf’s

fX(x) =
4

x(x+ 1)(x+ 2)
and fY (x) =

1

x(x+ 1)
,

respectively, where x = 1, 2, . . . . Check whether X and Y admit an expectation and, if so,
compute the value.

Given a discrete random variable X, how do we compute the expectation of the discrete
random variable Y = g(X)? Well, according to the definition, we first have to compute the
pmf of the newly defined Y = g(X). We have seen a first example of this procedure in
Example 3.0.29. We now work out the general case:

Lemma 4.1.9. Let X be a discrete random variable and let g : R→ R. The pmf of Y = g(X) is

fY (y) =
∑

x: g(x)=y

fX(x).

Proof. We have that the composition function Y = g ◦ X acts as follows: ω ∈ Ω 7→ X(ω) ∈
R 7→ g(X(ω)) ∈ R. We rewrite the event {ω ∈ Ω : Y (ω) = y}, in whose probability fY (y) we
are interested in, as a countable union of pairwise disjoint events:

{ω ∈ Ω : Y (ω) = y} = {ω ∈ Ω : g(X(ω)) = y} =
⋃

x: g(x)=y

{ω ∈ Ω : X(ω) = x}.

By countable additivity,

fY (y) = P(Y = y) =
∑

x: g(x)=y

P(X = x) =
∑

x: g(x)=y

fX(x),

as claimed.

Since doing the above procedure for each specific Y and then applying the definition of
expectation becomes pretty tedious, the following important result settle once and for all the
computation we need.

Theorem 4.1.10 (Law of the unconscious statistician, LOTUS). Let X be a discrete ran-
dom variable and let g : R→ R. Then

E(g(X)) =
∑
x

g(x)fX(x).

Proof. Let Y = g(X). We have seen in Lemma 4.1.9 that the pmf of Y is

fY (y) =
∑

x: g(x)=y

fX(x).
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Therefore, by definition of expectation,

E(Y ) =
∑
y

yfY (y)

=
∑
y

y
∑

x: g(x)=y

fX(x)

=
∑
y

∑
x: g(x)=y

yfX(x)

=
∑
y

∑
x: g(x)=y

g(x)fX(x)

=
∑
x

g(x)fX(x).

Example 4.1.11. Let X be the score obtained when throwing a fair die and let Y = (X−3)2.
Compute E(Y ).

We can proceed in two different ways. Either we first compute the pmf of Y as in
Lemma 4.1.9 and use the definition of expectation, or we simply use LOTUS. It will be-
come clear that the latter procedure should be preferred. Let us first find the pmf of Y .
The values taken by are 0, 1, 4, 9 and fY (0) = fX(3) = 1/6, fY (1) = fX(2) + fX(4) = 2/6,
fY (4) = fX(1) + fX(5) = 2/6, fY (9) = fX(6) = 1/6. Using the definition of expectation, we
then obtain

E(Y ) =
∑
y

yfY (y) = 0 · 1

6
+ 1 · 2

6
+ 4 · 2

6
+ 9 · 1

6
=

19

6
.

We now use LOTUS. Since the values taken by X are 1, 2, 3, 4, 5, 6, each with probability 1/6,
we obtain:

E(Y ) =
∑
x

(x− 3)2fX(x) = 4 · 1

6
+ 1 · 1

6
+ 0 · 1

6
+ 1 · 1

6
+ 4 · 1

6
+ 9 · 1

6
=

19

6
.

Example 4.1.12. Let X ∼ Poisson(λ). Compute the expectation of Y = eX .

E(Y ) = E(eX) =
∞∑
k=0

ek · fX(k) =
∞∑
k=0

ek · e
−λλk

k!
= e−λ

∞∑
k=0

(λe)k

k!
= e−λ · eλe,

where in the second equality we used LOTUS.

Expected values often provide a convenient vehicle for choosing optimally between several
candidate decisions that result in different expected rewards. If we view the expected reward
of a decision as its “average payoff over a large number of trials,” it is reasonable to choose a
decision with maximum expected reward.

Example 4.1.13 (The quiz problem). Consider a quiz game where a person is given two
questions and must decide which question to answer first. Question 1 will be answered
correctly with probability 0.8, and the person will then receive as prize $100, while question 2
will be answered correctly with probability 0.5, and the person will then receive as prize $200.
If the first question attempted is answered incorrectly, the quiz terminates i.e., the person is
not allowed to attempt the second question. If the first question is answered correctly, the
person is allowed to attempt the second question. Which question should be answered first
to maximize the expected value of the total prize money received?
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The answer is not obvious because there is a tradeoff: attempting first the more valuable
but also more difficult question 2 carries the risk of never getting a chance to attempt the
easier question 1. Let us view the total prize money received as a random variable X and
compute E(X) under the two possible question orders.

(a) Answer question 1 first: Then the pmf of X is fX(0) = 0.2, fX(100) = 0.8 ·0.5, fX(300) =
0.8 · 0.5 and so

E(X) = 0 · 0.2 + 100 · 0.8 · 0.5 + 300 · 0.8 · 0.5 = 160.

(b) Answer question 2 first: Then the pmf of X is fX(0) = 0.5, fX(200) = 0.5 ·0.2, fX(300) =
0.5 · 0.8 and so

E(X) = 0 · 0.5 + 200 · 0.5 · 0.2 + 300 · 0.5 · 0.8 = 140.

Therefore, it is preferable to attempt the easier question 1 first.

Example 4.1.14. Consider the following two discrete random variables X1 and X2, each
taking three values and with pmf given by

P(X1 = 49) = P(X1 = 51) =
1

4
and P(X1 = 50) =

1

2
;

P(X2 = 0) = P(X2 = 50) = P(X2 = 100) =
1

3
.

We have that

E(X1) = 49 · 1

4
+ 51 · 1

4
+ 50 · 1

2
= 50 and E(X2) = 0 · 1

3
+ 50 · 1

3
+ 100 · 1

3
= 50.

They have the same expected value but X1 is much less “dispersed” than X2.

In view of the previous example, we would like to introduce a measure of “dispersion”.
One way could be to measure how far things are from the expected value, on average. This
leads to the notion of variance.

Definition 4.1.15. The variance of a discrete random variable X is the quantity

var(X) = E((X − E(X))2).

The standard deviation of X is the quantity
√

var(X). The k-th moment of X is E(Xk).

Notice that in the previous definition we ask that the expectations involved exist.

Remark 4.1.16. How do we compute the variance of a discrete random variable X? We can
use the definition of expectation and first compute the pmf of the random variable (X −
E(X))2. Unsurprisingly, a faster way consists in relying on LOTUS, as shown in the following.
Let g(X) be the random variable (X − E(X))2 i.e., the function mapping ω ∈ Ω to (X(ω) −
E(X))2. LOTUS allows us to write

var(X) =
∑
x

(x− E(X))2fX(x).

Clearly, var(X) ≥ 0, as the factors of each summand are non-negative. But when is that
var(X) = 0? Well, var(X) = 0 if and only if (x − E(X))2fX(x) = 0 for each x. This means
that, for each x such that fX(x) > 0, we have x−E(X) = 0. But then the random variable X
is not really “random”: its value is equal to E(X) with probability 1.
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Example 4.1.17. Let X be the score obtained when throwing a fair die. Compute var(X).
We know that E(X) = 7/2 and so

var(X) =
∑
x

(x− E(X))2fX(x)

=
1

6

Å(
1− 7

2

)2
+
(

2− 7

2

)2
+
(

3− 7

2

)2
+
(

4− 7

2

)2
+
(

5− 7

2

)2
+
(

6− 7

2

)2
ã

=
35

12
.

Exercise 4.1.18. Show that var(X1) 6= var(X2), where X1 and X2 are the random variables
in Example 4.1.14.

Proposition 4.1.19. Let X be a discrete random variable and let a, b ∈ R. Then

(a) E(aX + b) = aE(X) + b.

(b) var(aX + b) = a2var(X).

(c) var(X) = E(X2)− E(X)2.

Proof. We repeatedly use LOTUS and Remark 4.1.16.
(a)

E(aX + b) =
∑
x

(ax+ b)fX(x) = a
∑
x

xfX(x) + b
∑
x

fX(x) = aE(X) + b.

(b)

var(aX + b) =
∑
x

(ax+ b− E(aX + b))2fX(x)

=
∑
x

(ax− aE(X))2fX(x)

= a2
∑
x

(x− E(X))2fX(x)

= a2var(X).

(c)

var(X) =
∑
x

(x− E(X))2fX(x)

=
∑
x

(x2 − 2xE(X) + E(X)2)fX(x)

=
∑
x

x2fX(x)− 2E(X)
∑
x

xfX(x) + E(X)2
∑
x

fX(x)

= E(X2)− 2E(X)E(X) + E(X)2

= E(X2)− E(X)2.

(a) and (b) show the behavior of expectation and variance of g(X), when g is a linear function.
(c) provides an alternative way of computing the variance.

Example 4.1.20. Let X ∼ Bernoulli(p). Recall that E(X) = p. LOTUS and (c) above then
imply that var(X) = (12 · p+ 02 · (1− p))− p2 = p(1− p).

Exercise 4.1.21. Show that the variance of the Poisson random variable with parameter λ > 0
is λ.
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4.2 Multiple discrete random variables

It is often the case that each outcome of an experiment generates several real numbers of
interest. We have seen how to treat these as individual random variables but it is often
important to consider their “joint behavior”. For example, complicated systems are monitored
by several computers that work together to run the system. If one fails or makes an error,
the others can override it and the system fails only when a majority of computers fail. If
Xi denotes the time until the i-th processor fails, then the time until the system fails depends
jointly on the collection of random variablesX1, . . . , Xn. As a concrete easy example, consider
the following.

Example 4.2.1. We flip a fair coin twice and let X1 be the number of heads on the first
flip, X2 be the number of heads on the second flip and Y = 1 − X1. Clearly, all these
random variables take values in {0, 1} and have the same pmf (the constant function 1/2).
So we might think that the pair (X1, X2) “behaves” like the pair (X1, Y ). But they are in fact
“different”. For example, in (X1, Y ), the value of Y is completely determined by that of X1,
whereas the values of X1 and X2 are independent. This is not reflected by the pmf of the
single random variables and so we need to find a way to encode the information about their
“collective behavior”. We will focus on the case of two random variables.

Definition 4.2.2. Let X1 and X2 be two discrete random variables. Their joint pmf is the
function defined by

fX1,X2(x1, x2) = P({X1 = x1} ∩ {X2 = x2}).

We usually denote P({X1 = x1} ∩ {X2 = x2}) by P(X1 = x1, X2 = x2).

Notice that fX1,X2(x1, x2) is a non-negative function from R2 to R which is non-zero only
on a countable set of points of R2, namely the vectors whose i-th component is one of the
countably many values Xi can take. Moreover, since Ω can be written as the union of pairwise
disjoint events of the form {X1 = x1} ∩ {X2 = x2}, we have that∑

x1,x2

fX1,X2(x1, x2) =
∑
x1,x2

P(X1 = x1, X2 = x2) = P(Ω) = 1.

Back to our example, we have that fX1,X2 is the constant function 1/4, whereas fX1,Y is
1/2 at the points (0, 1) and (1, 0) and 0 at the points (0, 0) and (1, 1).

As with the case of one random variable, the purpose of introducing the joint pmf is
to extract all the information in the probability measure P that is relevant to the random
variables we are considering. So we should be able to compute the probability of any event
defined just in terms of the random variables by simply using their joint pmf. The following
analogue of Lemma 3.0.37 in the case of multiple random variables shows that we can indeed
do that.

Proposition 4.2.3. Let X1 and X2 be two discrete random variables and let A ⊆ R2 be any set.
Then

P((X1, X2) ∈ A) =
∑

(x1,x2)∈A

fX1,X2(x1, x2).

The following important result shows that if we know the joint mass function of two
random variables, we can find all their separate mass functions. In this context, fX(x) and
fY (y) are called marginal pmf.
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Corollary 4.2.4. Let X and Y be discrete random variables. Then

fX(x) =
∑
y

fX,Y (x, y) and fY (y) =
∑
x

fX,Y (x, y).

Proof. By countable additivity, we have that

fX(x) = P(X = x) =
∑
y

P(X = x, Y = y) =
∑
y

fX,Y (x, y).

The expression for fY (y) is obtained similarly.

You can think of Corollary 4.2.4 as follows. The joint pmf is represented by a (countable)
table, where the number in each square (x, y) is the value fX,Y (x, y). To compute the marginal
fX(x) for a given value of x, we simply add the numbers in the column corresponding to x.
Similarly, to compute the marginal pmf fY (y) for a given value of y, we add the numbers in
the row corresponding to y.

Given a pair (X,Y ) of discrete random variables and a function g : R2 → R, we can build a
new discrete random variable Z = g(X,Y ) defined by Z(ω) = g(X,Y )(ω) = g(X(ω), Y (ω)).
Similarly to Lemma 4.1.9, the new random variable Z has pmf

fZ(z) =
∑

(x,y): g(x,y)=z

fX,Y (x, y).

We then have the following generalized version of the LOTUS, whose proof we omit.

Theorem 4.2.5. E(g(X,Y )) =
∑

x,y g(x, y)fX,Y (x, y).

Corollary 4.2.6 (Linearity of expectation). Let X and Y be discrete random variables and
a, b ∈ R. Then

E(aX + bY ) = aE(X) + bE(Y ).

Proof. We have:

E(aX + bY ) =
∑
x,y

(ax+ by)fX,Y (x, y)

= a
∑
x

∑
y

xfX,Y (x, y) + b
∑
x

∑
y

yfX,Y (x, y)

= a
∑
x

∑
y

xfX,Y (x, y) + b
∑
y

∑
x

yfX,Y (x, y)

= a
∑
x

x
∑
y

fX,Y (x, y) + b
∑
y

y
∑
x

fX,Y (x, y)

= a
∑
x

xfX(x) + b
∑
y

yfY (y)

= aE(X) + bE(Y ).

The first equality follows from Theorem 4.2.5. The exchange in the order of summation
in the third equality is possible thanks to the absolute convergence of the series

∑
x,y(ax +

by)fX,Y (x, y). The fifth equality follows from Corollary 4.2.4.
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Corollary 4.2.6 is extremely useful and generalizes to n random variables:

E(a1X1 + · · ·+ anXn) = a1E(X1) + · · ·+ anE(Xn).

Example 4.2.7. By using the definition of expectation, we have seen that the expectation of
a Binomial random variable X with parameters n and p is np. A faster way to obtain this
result is the following.

Let Xj be the random variable taking value 1 if the j-th flip results in heads and 0 other-
wise (hence Xj ∼ Bernoulli(p)). As X counts the number of heads in the n flips, we have
that X = X1 + · · ·+Xn and so

E(X) = E(X1 + · · ·+Xn) = E(X1) + · · ·+ E(Xn) = np.

Example 4.2.8. Similarly to the previous example, we can use linearity of expectation to
compute the expectation of the negative binomial random variable. Let X1 be the number
of trials required for the 1-st success, X2 the additional number of trials for the 2-nd success
and so on until Xr which is the additional number of trials for the r-th success. Then X =
X1 + · · · + Xr. But the trials are independent and so X1, . . . , Xr is a family of geometric
random variables, each with parameter p. Therefore,

E(X) = E(X1 + · · ·+Xr) = E(X1) + · · ·+ E(Xr) = r · 1

p
.

Example 4.2.9 (Coupon collector). Each packet of a product is equally likely to contain any
one of n different types of coupon, independently of every other packet. What is the expected
number of packets you must buy to obtain at least one of each type of coupon?

Let R be the number of packets required to complete a set of n distinct coupons. We need
to compute E(R). Let T1 be the number of packets required to obtain the first coupon, T2 the
further number of packets required to obtain a second type of coupon, T3 the further number
required for a third type and so on. Then, R =

∑n
i=1 Ti. It is easy to see that

P(Tk = r) =

Å
k − 1

n

ãr−1Ån− (k − 1)

n

ã
.

Hence Tk is a geometric random variable with parameter n−k+1
n and so with mean n

n−k+1 .
Since R =

∑n
k=1 Tk, we can then conclude by linearity of expectation that

E(R) = n
n∑
k=1

1

k
,

which is roughly n log n.

Exercise 4.2.10. A box contains the numbers 1, 2, . . . , 10. We pick three numbers at random
from the box and compute their sum X. Find E(X).

Exercise 4.2.11. We toss a fair coin 20 times. What is the expected number of runs of 3 heads?

Exercise 4.2.12. Let X be the number of fixed points in a random permutation of n items, say
for example the number of students in a class of size n who receive their own homework after
shuffling. Show that E(X) = var(X) = 1.

Exercise 4.2.13. Given a permutation of the numbers 1, 2, . . . , n, a number is called a record if
it is bigger than all the preceding numbers. The first number is always a record. For example, in
the permutation 3 2 1 5 7 4 6, the numbers 3, 5, 7 are records. Let X be the number of records in
a random permutation. Compute E(X).
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4.3 Conditioning discrete random variables

Consider our usual setting (Ω,F ,P) of a probability space and let X be a discrete random
variable. Suppose that we know that some event B occurs with P(B) > 0. We have seen that
this gives rise to a (conditional) probability measure, namely the function P : F → R defined
by P (A) = P(A|B) (see Lemma 2.5.2). It makes therefore sense to consider the pmf of X
with respect to the (conditional) measure P .

Definition 4.3.1. Let X be a discrete random variable and let B be an event with P(B) > 0.
The conditional probability mass function of X given B is the function fX|B(x) = P(X =
x|B).

Note that, by definition of conditional probability,

fX|B(x) = P(X = x|B) =
P(X = x,B)

P(B)
.

This function is clearly non-negative and
∑

x fX|B(x) = 1 (hence it is a legitimate pmf).
Indeed, the event B can be written as the countable union of pairwise disjoint events of the
form {X = x} ∩B (where x ranges through the countably many values taken by X) and so

P(B) =
∑
x

P(X = x,B) =
∑
x

fX|B(x) · P(B) = P(B)
∑
x

fX|B(x).

Let now X and Y be two discrete random variables associated with the same probability
space. If we know that the value of Y is y (with fY (y) > 0), we can consider the conditional
pmf of X given the event {Y = y}. Definition 4.3.1 adapts as follows: the conditional pmf
of X given Y = y is the function

fX|Y (x|y)
def
= P(X = x|Y = y) =

P(X = x, Y = y)

P(Y = y)
=
fX,Y (x, y)

fY (y)
.

The conditional pmf is particularly useful if we want to compute the joint pmf. Indeed, we
have fX,Y (x, y) = fX|Y (x|y) · fY (y).

Example 4.3.2. Consider four independent rolls of a 6-sided die. Let X be the number of 1’s
and Y be the number of 2’s obtained. What is the joint pmf of the discrete random variables
X and Y ?

Intuitively, X and Y are “related” and fX|Y (x|y) = P(X = x|Y = y) should be easier to
compute than fX,Y (x, y) = P(X = x, Y = y). We then try to compute fY (y) and fX|Y (x|y)
and multiply them to get fX,Y (x, y). Notice first that X and Y are nothing but Binomial
random variables with parameters n = 4 and p = 1/6. Indeed, nothing prevents you to think
of the die as a biased coin in which the face 2 represents the outcome heads and all the other
faces the outcome tails. Therefore,

fY (y) =

Ç
4

y

åÅ
1

6

ãyÅ5

6

ã4−y
,

for y ∈ {0, 1, 2, 3, 4}. Suppose now we have observed that Y = y. Then X is the number of 1’s
in the remaining 4− y rolls, each of which can take one of the remaining values {1, 3, 4, 5, 6}
with probability 1/5. This is again a Binomial random variable with parameters n = 4−y and
p = 1/5 and so

fX|Y (x|y) = P(X = x|Y = y) =

Ç
4− y
x

åÅ
1

5

ãxÅ4

5

ã4−y−x
,

for x, y ∈ {0, 1, 2, 3, 4} with 0 ≤ x+ y ≤ 4.
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Example 4.3.3. Professor May B. Right often has her facts wrong and answers each of her
students’ questions incorrectly with probability 1/4, independently of other questions. In each
lecture, May is asked 0, 1, or 2 questions with equal probability 1/3. What is the probability
that, in a lecture, she gives at least one wrong answer?

Let X and Y be the number of questions May is asked and the number of questions she
answers wrong in the given lecture, respectively. Recalling that fX,Y (x, y) = fY |X(y|x)·fX(x),
the desired probability is

fX,Y (1, 1) + fX,Y (2, 1) + fX,Y (2, 2) =
1

4
· 1

3
+

1

4
· 3

4
· 2 · 1

3
+

1

4
· 1

4
· 1

3
.

The conditional pmf can also be used to compute one marginal pmf given the other. In-
deed, Corollary 4.2.4 implies that

fX(x) =
∑
y

fX,Y (x, y) =
∑
y

fX|Y (x|y) · fY (y),

which is morally the same as the law of total probability.

4.4 Conditional expectation of discrete random variables

A conditional pmf can be thought of as an ordinary pmf over a new universe determined by
the conditioning event. In the same spirit, a conditional expectation is the same as an ordinary
expectation, except that it refers to the new universe.

Definition 4.4.1. Let X and Y be discrete random variables. The conditional expectation
of X given the event B is

E(X|B) =
∑
x

xfX|B(x),

provided that the series is absolutely convergent.
Adapting the above to events of the form {Y = y}, we obtain the conditional expectation

of X given Y = y:
E(X|Y = y) =

∑
x

xfX|Y (x|y).

Expectation and conditional expectation are related via the following important result.
In words, it basically says that “the unconditional average can be obtained by averaging the
conditional averages”.

Theorem 4.4.2 (Total expectation theorem). Let X and Y be discrete random variables.
Then

E(X) =
∑
y

E(X|Y = y) · fY (y),

provided that the expectations exist.
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Proof. Recall that fX(x) =
∑

y fX|Y (x|y)fY (y). Therefore,

E(X) =
∑
x

xfX(x)

=
∑
x

x
∑
y

fX|Y (x|y)fY (y)

=
∑
x

∑
y

xfX|Y (x|y)fY (y)

=
∑
y

∑
x

xfX|Y (x|y)fY (y)

=
∑
y

fY (y)
∑
x

xfX|Y (x|y)

=
∑
y

fY (y) · E(X|Y = y),

where the exchange of summation is possible thanks to absolute convergence.

Corollary 4.4.3. Let B1, B2, . . . be a partition of Ω such that P(Bi) > 0 for each i. Then

E(X) =
∑
i

E(X|Bi) · P(Bi).

Proof. Let Y be the discrete random variable that takes the value i if and only if Bi occurs.
Clearly,

fY (i) = P(Y = i) =

®
P(Bi) for i = 1, 2, . . .;

0 otherwise.

By the Total expectation theorem,

E(X) =
∑
i

E(X|Y = i) · fY (i) =
∑
i

E(X|Bi) · P(Bi),

as ω ∈ Bi if and only if ω ∈ {Y = i}.

Theorem 4.4.2 and Corollary 4.4.3 are the “expectation versions” of the law of total prob-
ability.

Example 4.4.4. We have already computed the expectation of the geometric random vari-
able. To show the versatility of the Total expectation theorem, we provide yet another com-
putation. Recall that the pmf of a geometric random variable X with parameter p is given
by fX(x) = (1 − p)x−1p. We use Corollary 4.4.3 by conditioning on the outcome of the first
toss (as it is good practice when we have repeated independent trials). Therefore, consider
the events {X = 1} (i.e., the first toss gives heads) and its complement {X > 1}. Clearly,
P(X = 1) = p and P(X > 1) = 1− p.

Given that the first toss is heads, the expected number of tosses before getting heads
should be 1 i.e., E(X|X = 1) = 1. Indeed,

E(X|X = 1) =

∞∑
x=1

xP(X = x|X = 1) = 1,
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as only the first term of the series is non-zero.
Intuitively, given that the first toss is tails, the expected number of tosses before getting

heads should be E(X|X > 1) = E(X) + 1. Let’s check it. We have that

E(X|X > 1) =
∞∑
x=1

xP(X = x|X > 1) =
∞∑
x=2

xP(X = x|X > 1).

But now observe that, for each x ≥ 2,

P(X = x|X > 1) =
P(X = x,X > 1)

P(X > 1)
=

P(X = x)

P(X > 1)
= (1− p)x−2p = P(X = x− 1).

Therefore,

E(X|X > 1) =

∞∑
x=2

xP(X = x− 1)

=
∞∑
x=2

(x− 1 + 1)P(X = x− 1)

=
∞∑
x=2

(x− 1)P(X = x− 1) +
∞∑
x=2

P(X = x− 1)

= E(X) + 1.

Corollary 4.4.3 then implies that

E(X) = E(X|X = 1)P(X = 1) + E(X|X > 1)P(X > 1) = 1 · p+ (1 + E(X))(1− p),

from which we obtain E(X) = 1/p.

Example 4.4.5. A coin is tossed repeatedly and heads appears at each toss with probability
p, where 0 < p < 1. Find the expected length of the initial run (this is a run of heads if the
first toss gives heads, and of tails otherwise).

As in the previous example, we condition on the result of the first toss. Therefore, let H
be the event that the first toss gives heads and let Hc be the event that the first toss gives tails.
The pair H,Hc forms a partition of the sample space. Let X be the length of the initial run.
We have that

P(X = k|H) = pk−1(1− p),

for k = 1, 2, . . ., since if H occurs, then {X = k} occurs if and only if the first toss is followed
by exactly k − 1 heads and then a tail. Similarly,

P(X = k|Hc) = (1− p)k−1p,

for k = 1, 2, . . .. Therefore,

E(X|H) =
∞∑
k=1

kpk−1(1− p) =
1

1− p

and

E(X|Hc) =

∞∑
k=1

k(1− p)k−1p =
1

p
,
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where we used the fact that the two sums are nothing but the expectations of geometric
random variables with parameters 1 − p and p, respectively (see Example 4.1.7). But then
Corollary 4.4.3 implies that

E(X) = E(X|H)P(H) + E(X|Hc)P(Hc) =
1

1− p
· p+

1

p
· (1− p).

Exercise 4.4.6. Show that the geometric random variable X has the lack of memory property.
Namely, P(X > m+ n|X > m) = P(X > n), for each m and n in N.

Exercise 4.4.7. Let N be the number of tosses of a fair coin up to and including the appearance
of the first head. By conditioning on the result of the first toss, show that E(N) = 2.

Exercise 4.4.8. I try to open a door with one of the 5 similar keys in my pocket; one of them is
correct, the other four will not turn.

(a) Let X be the number of attempts necessary if I choose a key at random from my pocket and
drop those that fail on the floor. Compute E(X).

(b) Let Y be the number of attempts necessary if I choose a key at random from my pocket and
put those that fail back in my pocket. Compute E(Y ).

Exercise 4.4.9. The probability of obtaining a head when a certain coin is tossed is p. The coin
is tossed repeatedly until n heads occur in a row. Let X be the total number of tosses required for
this to happen. Compute E(X).

4.5 Independence of discrete random variables

Definition 4.5.1. Two discrete random variables X and Y are independent if fX,Y (x, y) =
fX(x)fY (y) for each pair (x, y) ∈ R2. More generally, a family of n discrete random variables
X1, . . . , Xn is independent if

P(X1 = x1, . . . , Xn = xn) = P(X1 = x1) · · ·P(Xn = xn)

for each (x1, . . . , xn) ∈ Rn. Finally, an arbitrary family of random variables is independent if
each finite subfamily is.

Notice that X and Y are independent if and only if the events {X = x} and {Y = y} are
independent for each (x, y) ∈ R2. Recall that fX,Y (x, y) = fX|Y (x|y) · fY (y). Therefore, X
and Y are independent if and only if fX|Y (x|y) = fX(x) for each y with fY (y) > 0 and for
each x i.e., the experimental value of Y tells us nothing about the value of X.

Example 4.5.2. Consider again the random variables X1, X2 and Y = 1 − X1 in Exam-
ple 4.2.1. We have that X1 and X2 are independent but X1 and Y are not.

Example 4.5.3. Let X1 and X2 be independent Poisson random variables with parameters
λ1 and λ2, respectively. What is the pmf of X1 +X2? We need to determine P(X1 +X2 = n).
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We use the Law of total probability and independence:

P(X1 +X2 = n) =
n∑
k=0

P(X1 = k,X2 = n− k) =
n∑
k=0

P(X1 = k)P(X2 = n− k)

=
n∑
k=0

e−λ1
λk1
k!
· e−λ2 λn−k2

(n− k)!

= e−(λ1+λ2)
n∑
k=0

λk1λ
n−k
2

k!(n− k)!

=
e−(λ1+λ2)

n!

n∑
k=0

n!

k!(n− k)!
λk1λ

n−k
2

= e−(λ1+λ2) (λ1 + λ2)n

n!
,

where in the last equality we used the Binomial theorem. The computation shows thatX1+X2

is a Poisson random variable with parameter λ1 + λ2.

Exercise 4.5.4. Let X1 and X2 be independent Poisson random variables with parameters λ1

and λ2, respectively.

(i) Compute the conditional pmf of X1 given that X1 +X2 = n.

(ii) Using (i), compute the conditional expectation of X1 given that X1 +X2 = n.

(iii) Suppose that λ1 = λ2. Explain how in this case we can instead use symmetry and linearity
of expectation in order to deduce that E(X1|X1 +X2 = n) = 1

2E(X1 +X2|X1 +X2 = n)
and compute the actual value of E(X1|X1 +X2 = n).

Theorem 4.5.5. Let X and Y be independent discrete random variables. Then

(a) For any sets A,B ⊆ R, we have that P(X ∈ A, Y ∈ B) = P(X ∈ A)P(Y ∈ B).

(b) For any functions g, h : R→ R, we have that g(X) and h(Y ) are independent.

Notice that (a) extends to a family X1, . . . , Xn of n independent discrete random variables:
for any sets S1, . . . , Sn ⊆ R, we have

P(X1 ∈ S1, . . . , Xn ∈ Sn) =
n∏
i=1

P(Xi ∈ Si).

Proof. (a) We have that {X ∈ A, Y ∈ B} =
⋃
x∈A, y∈B{X = x, Y = y}, where the union is

countable since both X and Y are discrete random variables. But then countable additivity
and independence imply that

P(X ∈ A, Y ∈ B) =
∑
x∈A

∑
y∈B

P(X = x, Y = y)

=
∑
x∈A

∑
y∈B

P(X = x)P(Y = y)

=

Å∑
x∈A

P(X = x)

ãÅ∑
y∈B

P(Y = y)

ã
= P(X ∈ A)P(Y ∈ B).

(b) It will be part of a homework assignment.
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Exercise 4.5.6. Let X and Y be independent geometric random variables with pmf’s fX(x) =
(1− λ)λx−1 and fY (y) = (1− µ)µy−1, respectively. Find the pmf of Z = min{X,Y }.

It is in general not true that, given two discrete random variables X and Y , E(XY ) =
E(X)E(Y ) holds. Consider for example the random variable X taking values 1 and −1,
each with probability 1/2. Then E(X) = 0 and E(X2) = 1. Taking Y = X we see that
indeed E(XY ) = E(X)E(Y ) does not hold. However, the situation changes if X and Y are
independent:

Theorem 4.5.7. Let X and Y be independent discrete random variables. Then E(XY ) =
E(X)E(Y ).

Proof. We use Theorem 4.2.5 with the function g : R2 → R given by g(x, y) = xy:

E(XY ) =
∑
x

∑
y

xyfX,Y (x, y) =
∑
x

∑
y

xyfX(x)fY (y) =
∑
x

xfX(x)
∑
y

yfY (y) = E(X)E(Y ),

where the second equality follows by independence.

Remark 4.5.8. If X and Y are independent, we have seen that g(X) and h(Y ) are indepen-
dent as well and so, by Theorem 4.5.7, E(g(X)h(Y )) = E(g(X))E(h(Y )).

Recall that the expectation is linear. In particular, E(X + Y ) = E(X) + E(Y ) for any two
random variables X and Y . Although not true in general2, variance is linear for families of
independent random variables.

Theorem 4.5.9. If X and Y are independent discrete random variables, then var(X + Y ) =
var(X) + var(Y ).

Proof. We have

var(X + Y ) = E((X + Y )2)− (E(X + Y ))2

= E(X2) + E(Y 2) + 2E(XY )− (E(X))2 − (E(Y ))2 − 2E(X)E(Y )

= var(X) + var(Y ),

where in the first equality we used Proposition 4.1.19(c), in the second we used LOTUS to
expand the first term and linearity of expectation to expand the second term, and in the last
equality we used Theorem 4.5.7.

Theorem 4.5.9 generalizes as follows:

If X1, . . . , Xn are independent discrete random variables, then

var(X1 + · · ·+Xn) = var(X1) + · · ·+ var(Xn).

Example 4.5.10. Let us compute the variance of a Binomial random variable X with param-
eters n and p. Recall from Example 4.2.7 that X can be written as the sum of n Bernoulli
random variables Xi with P(Xi = 1) = p and P(Xi = 0) = 1 − p. By independence of coin
tosses, X1, . . . , Xn are independent and so var(X) = var(X1) + · · ·+ var(Xn) = np(1− p).

2For a counterexample consider again X = Y , where X takes values 1 and −1, each with probability 1/2.
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We now introduce an indicator of “dependence” between two random variables:

Definition 4.5.11. The covariance of the discrete random variables X and Y is

cov(X,Y ) = E[(X − E(X))(Y − E(Y ))]

and X and Y are uncorrelated if cov(X,Y ) = 0.

The covariance of two random variables is a measure of their tendency to be larger than
their expected value together. A negative covariance means that when one of the random
variables is larger than its mean, the other is more likely to be less than its mean. By linearity
of expectation, we have that

cov(X,Y ) = E[(X − E(X))(Y − E(Y ))] = E(XY )− E(X)E(Y )

and so cov(X,Y ) = 0 if and only if E(XY ) = E(X)E(Y ). Even though independence implies
uncorrelation, the converse is not true, as shown in the following:

Example 4.5.12. Let X be a discrete random variable such that fX(x) = fX(−x) for each
x ∈ Im(X). Suppose that E(X3) exists and let Y = X2. Clearly, X and Y are not independent.
However, by LOTUS, we have

E(XY ) = E(X3) =
∑
x>0

x3(fX(x)− fX(−x)) = 0.

Similarly,
E(X) =

∑
x>0

x(fX(x)− fX(−x)) = 0

and so E(XY ) = E(X)E(Y ).

4.6 Weak law of large numbers

Throughout this section, we assume that the random variables we are working with are dis-
crete. Notice however that all stated results hold for any type of random variables.

Very often, in probability, we want to assert that some sequence of random variables tends
to a limit in a suitable probabilistic sense. Limit theorems are useful for several reasons:

• They provide an interpretation of expectations in terms of a long sequence of identical
independent experiments.

• They allow for an approximate analysis of the properties of random variables such as
X1+···+Xn

n , where in contrast an exact analysis might reveal to be a complicated task.

• They describe the long term behavior of a stochastic process, where a stochastic process
is nothing but a sequence {Xn} of random variables indexed by time n.

We begin by considering the following classical situation. Let X1, X2, . . . be a sequence of
independent identically distributed (i.i.d. for short) random variables with expectation µ and
variance σ2. We look at the random variable

Mn =
X1 + · · ·+Xn

n
.
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By linearity of expectation,

E(Mn) =
1

n
(E(X1) + · · ·+ E(Xn)) = µ.

Since X1, . . . , Xn are independent, Proposition 4.1.19 and Theorem 4.5.9 imply that

var(Mn) =
1

n2
var(X1 + · · ·+Xn) =

1

n2
(var(X1) + · · ·+ var(Xn)) =

σ2

n
.

In particular, the variance of Mn decreases to 0 as n increases. This phenomenon is the
subject of the so-called Laws of large numbers (Weak and Strong), asserting that the random
variables Mn converge to µ in a precise sense. We will see how this provides mathematical
justification for the loose interpretation of the expectation of a random variable X as the
average of a large number of independent samples drawn from the distribution of X.

In order to make the discussion above more precise, we need to introduce some probability
inequalities. We remark that they hold for continuous random variables as well (with almost
identical proofs, provided we define the expectation and variance of a continuous random
variable) but we should content ourselves with discrete ones.

Theorem 4.6.1 (Markov’s inequality). Let X be a non-negative random variable. Then, for
each a > 0,

P(X ≥ a) ≤ E(X)

a
.

Proof. Fix a > 0 and consider the discrete random variable Ya defined by

Ya =

®
0 if X < a;

a if X ≥ a;

By construction, X ≥ Ya (this should be understood as X(ω) ≥ Ya(ω) for each ω ∈ Ω). But
then, using monotonicity of expectation (show that it indeed holds!), we have

E(X) ≥ E(Ya) = aP(Ya = a) = aP(X ≥ a),

as claimed.

In words, if a non-negative random variable has small expectation, then the probability
that it takes a large value is small.

Theorem 4.6.2 (Chebyshev’s inequality). Let X be a random variable. Then, for each c > 0,

P(|X − E(X)| ≥ c) ≤ var(X)

c2
.

Proof. We apply Markov’s inequality to the non-negative random variable (X − E(X))2 and
take a = c2:

P((X − E(X))2 ≥ c2) ≤ E((X − E(X))2)

c2
=

var(X)

c2
.

But the event {(X − E(X))2 ≥ c2} is the same as the event {|X − E(X)| ≥ c} and the
conclusion follows.

In words, if a random variable has small variance, then the probability that it takes a value
far from its expectation is small.
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Example 4.6.3. Let X be the random variable counting the number of students in a class
of size n who receive their own homework after shuffling. Recall from Exercise 4.2.12 that
E(X) = var(X) = 1. We now want to estimate P(X ≥ 20). By monotonicity and Chebyshev’s
inequality,

P(X ≥ 20) ≤ P(|X − 1| ≥ 19) ≤ 1

192
.

Notice this is independent of the class size n.

Example 4.6.4. Let X be a discrete random variable with E(X) = E(X2) = 0. Then X = 0
almost surely i.e., P(X = 0) = 1. We observed this in Remark 4.1.16. We now deduce it using
Chebyshev’s inequality. Since var(X) = E(X2)− (E(X))2 = 0, Chebyshev’s inequality implies
that P(|X| ≥ c) = 0 for each c > 0. But {|X| > 0} =

⋃
k∈N{|X| > 1/k} and so the union

bound implies that

P(|X| > 0) ≤
∞∑
k=1

P(|X| > 1/k) = 0,

from which we obtain that P(X = 0) = 1.

Exercise 4.6.5. LetX be a discrete random variable with E(X) = 10 and var(X) = 5. Estimate
the probability P(3 < X < 15).

Let’s now go back to our sequence X1, X2, . . . of i.i.d. random variables with expectation
µ and variance σ2. We have seen that the random variable

Mn =
X1 + · · ·+Xn

n

has expectation E(Mn) = µ and variance var(Mn) = σ2/n. Applying Chebyshev’s inequality
to Mn and taking c = ε, we have that for each ε > 0,

P(|Mn − µ| ≥ ε) ≤
σ2

nε2
.

But for fixed ε > 0, the RHS goes to 0 as n→∞. We have therefore proved the following:

Theorem 4.6.6 (Weak law of large numbers, WLLN). Let X1, X2, . . . be i.i.d. random vari-
ables with expectation µ. Then, for each ε > 0,

P
Å∣∣∣∣X1 + · · ·+Xn

n
− µ

∣∣∣∣ ≥ εã→ 0

as n→∞.

Remark 4.6.7. Notice that, if we drop the independence assumption, the theorem will in
general be false.

A consequence of the WLLN is the following interpretation of the expectation of a random
variable: The arithmetic average of a sequence of independent observations of a random
variable X converges with high probability to E(X). More precisely,

we can estimate the expectation of a random variable with any amount of precision
with arbitrary probability if we use a sufficiently large number of samples of its value.
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The WLLN is not completely satisfactory as it just states that the probability P(|Mn−µ| ≥ ε)
of a significant deviation of Mn from µ goes to zero as n → ∞. Still, for any n ∈ N, this
probability might be positive and it is conceivable that once in a while, even if infrequently,
Mn deviates significantly from µ. The problem of the WLLN is that it deals with a somewhat
weak notion of convergence, called convergence in probability. What would back our intuitive
notion of expectation though, is another notion of convergence, called convergence almost
surely, according to which Mn converges to µ with probability 1. This is the content of the
so-called Strong law of large numbers, which implies that, for any given ε > 0, the difference
|Mn − µ| exceeds ε only finitely many times. We will not go into details.



Chapter 5

Continuous random variables

In this section we are essentially going to revisit the notions introduced in Chapter 3, this time
in the context of continuous random variables. Recall that a random variable X is continuous
if its distribution function FX can be expressed as

FX(x) = P(X ≤ x) =

∫ x

−∞
fX(u) du,

for some integrable function fX : R→ [0,∞) called the pdf of X. Moreover, if the distribution
function is differentiable at x ∈ R, then

fX(x) =
dFX(x)

dx
.

The following properties hold for a continuous random variable X and its pdf fX :

1. P(x < X ≤ y) =
∫ y
x fX(u) du.

2. P(X = x) = 0.

3.
∫∞
−∞ fX(u) du = 1.

Definition 5.0.1. Let X be a continuous random variable with pdf fX(x). The expectation
of X is

E(X) =

∫ ∞
−∞

xfX(x) dx,

provided that the following improper integral converges:∫ ∞
−∞
|xfX(x)| dx <∞.

Remark 5.0.2. The convergence of the improper integral guarantees that the expectation is
well-defined and finite.

Example 5.0.3. Recall that the uniform random variable X on the interval [a, b] has pdf
given by

f(x) =


1

b− a
if a ≤ x ≤ b;

0 otherwise.

Therefore,

E(X) =

∫ ∞
−∞

xf(x) dx =

∫ b

a
x · 1

b− a
dx =

a+ b

2
.

66
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We have seen that if X is an arbitrary random variable and g : R→ R is continuous, then
g(X) is a random variable. In fact, if X is discrete, g(X) is discrete for any function g. On the
other hand, if X is continuous, g(X) can be either continuous or discrete. The former occurs
for example if g is the identity, the latter by taking g as follows (see hw9):

g(x) =

®
1 if x > 0;

0 otherwise.

Given the pdf ofX, how do we compute the pdf of g(X)? The standard technique is illustrated
in the following example.

Example 5.0.4. Let X be a continuous random variable with pdf

fX(x) =

®
2x if 0 < x < 1;

0 otherwise.

Find the pdf of Y = 2X − 1.
We first obtain the distribution function of Y and then differentiate. We have

FY (y) = P(Y ≤ y) = P(2X − 1 ≤ y) = P
Å
X ≤ y + 1

2

ã
= FX

Å
y + 1

2

ã
.

Therefore, for each −1 < y < 1, we have

fY (y) =
dFY (y)

dy
=

1

2
· fX
Å
y + 1

2

ã
=
y + 1

2
,

where the second equality follows from the Chain rule.

Example 5.0.5. Given a continuous random variable X, we compute the pdf of Y = X2. As
in the previous example, we first obtain the distribution function of Y and then differentiate.
For each y > 0, we have

FY (y) = P(Y ≤ y) = P(X2 ≤ y) = P(−√y ≤ X ≤ √y) = FX(
√
y)− FX(−√y),

where in the last equality we used Lemma 3.0.36. Therefore,

fY (y) =
dFY (y)

dy
=
fX(
√
y)

2
√
y

+
fX(−√y)

2
√
y

,

where the last equality follows from the Chain rule.

If we are just interested in the expectation of g(X), we can however skip the computation
of the pdf of g(X), thanks to the following result. It is the continuous analogue of the Law of
the unconscious statistician.

Theorem 5.0.6 (LOTUS). If X and g(X) are continuous random variables, then

E(g(X)) =

∫ ∞
−∞

g(x)fX(x) dx.
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Example 5.0.7. Let X be a continuous random variable with pdf

fX(x) =

®
3x2 if 0 < x < 1;

0 otherwise.

Compute the expectation of Y = X2.
We can proceed in two ways. Either we compute the pdf of Y and use the definition of

expectation or just apply LOTUS. As for the first way, we have seen in Example 5.0.5 that

fY (y) =
fX(
√
y) + fX(−√y)

2
√
y

=


3y

2
√
y

if 0 < y < 1;

0 otherwise.

Therefore,

E(Y ) =

∫ ∞
−∞

yfY (y) dy =

∫ 1

0

3

2
y3/2 dy =

3

5
.

Using LOTUS, we immediately get

E(Y ) =

∫ ∞
−∞

x2fX(x) dx =

∫ 1

0
3x4 dx =

3

5
.

Definition 5.0.8. Let λ > 0. A continuous random variable X with pdf given by

fX(x) =

®
λe−λx if x ≥ 0;

0 otherwise.

is called exponential with parameter λ, denoted by X ∼ Exp(λ).

What is the distribution function of X? Since X is continuous, we have that

FX(x) = P(X ≤ x) =

∫ x

−∞
fX(u) du =

∫ x

0
λe−λu du = 1− e−λx.

Therefore, for any a ≥ 0,

P(X > a) = 1− P(X ≤ a) = 1− (1− e−λa) = e−λa (5.1)

and so the probability that X exceeds a falls exponentially. The exponential random variable
is a good model for the amount of time until a certain event occurs. For example, the amount
of time until a piece of equipment breaks down, until a car accident occurs or until the next
earthquake. Using integration by parts, it is easy to see that the expectation of an exponential
random variable X with parameter λ is

E(X) =

∫ ∞
−∞

xfX(x) dx =

∫ ∞
0

xλe−λx dx =
1

λ
.

Example 5.0.9. Suppose that the duration of a phone call in minutes is an exponential ran-
dom variable X with parameter λ = 1/10. What is the probability that the phone call lasts
more than 10 minutes? This is just P(X > 10) = e−1. Suppose now we know that the phone
call has already lasted 10 minutes. What is the probability that it will last at least 10 more
minutes? The probability we are interested in is

P(X > 20|X > 10) =
P(X > 20, X > 10)

P(X > 10)
=

P(X > 20)

P(X > 10)
=
e−2

e−1
= e−1.
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The same argument used in the previous example shows that if Y is exponential, then

P(Y > t+ s|Y > s) = P(Y > t),

for each t, s > 0. But this is the lack of memory property and we have seen that, in the discrete
world, the geometric random variable has this property. It turns out that the exponential
random variable can be viewed as the continuous analogue of the geometric random variable
in the following sense. Suppose that X ∼ Geometric(p), for p small, and recall that P(X >
n) = (1− p)n. Consider now the rescaled random variable X/E(X) = pX. We have that

P(pX > t) = P(X > t/p) ≈ (1− p)
t
p ≈ e−t,

where in the last approximation we used the fact that e−1 = limn→∞(1 − 1/n)n. In other
words, the rescaled geometric pX behaves like the exponential with parameter λ = 1 when p
is small.

Definition 5.0.10. The variance of a continuous random variable X is defined exactly as in
the discrete case: var(X) = E((X − E(X))2).

By LOTUS, the variance can be computed as follows:

var(X) =

∫ ∞
−∞

(x− E(X))2fX(x) dx

=

∫ ∞
−∞

x2fX(x) dx− 2E(X)

∫ ∞
−∞

xfX(x) dx+ E(X)2

∫ ∞
−∞

fX(x) dx

= E(X2)− 2E(X)E(X) + E(X)2

= E(X2)− E(X)2,

exactly as in the discrete case.

Example 5.0.11. LetX ∼ Exp(λ). Then var(X) = 1/λ2. Indeed, we know that E(X) = 1/λ.
Moreover, by LOTUS and integration by parts, we have that

E(X2) =

∫ ∞
0

x2fX(x) dx =
2

λ2
.

Exercise 5.0.12. Let X be the uniform random variable on the interval [a, b].

1. Compute var(X);

2. Compute the pdf of Y = X2.

Exercise 5.0.13. During any 8-hour shift, the proportion of time X that a machine is down for
maintenance or repairs has pdf given by:

fX(x) =

®
2(1− x) if 0 ≤ x ≤ 1;

0 otherwise.

The total cost in $ of this downtime, due to lost production, maintenance and repair, is given by
C = 200(5 + 10X + 2X2). Compute E(C).

Exercise 5.0.14. The radius of a circle is a uniform random variable on [1, 2]. What is the pdf
of the area of the circle?

Exercise 5.0.15. The amount of time needed to wash a car at a car washing station is an
exponential random variable with expected value of 15 minutes. You arrive while the washing
station is occupied and one other car is waiting for a washing. The owner of this car informs you
that the car in the washing station has already been there for 10 minutes. What is the probability
that the car in the washing station will need no more than 5 other minutes?
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5.1 Multiple continuous random variables

Definition 5.1.1. Two continuous random variables X and Y admit joint pdf if there exists
a non-negative integrable function fX,Y : R2 → R such that

P((X,Y ) ∈ B) =

∫∫
(x,y)∈B

fX,Y (x, y) dxdy,

for every B ⊆ R2 for which the double integral exists.

We will not need the proper definition of double integral; it will be enough to know that it
computes the volume of the 3-dimensional region between the portion of the plane B and the
surface z = fX,Y (x, y).

In many cases, the double integral can be computed as an iterated integral. For example,
if B is the rectangle [a, b]× [c, d] ⊆ R2, we have that

P((X,Y ) ∈ B) = P(a ≤ X ≤ b, c ≤ Y ≤ d) =

∫ d

c

(∫ b

a
fX,Y (x, y) dx

)
dy,

where in the inner integral we integrate with respect to x (and hence y is treated as a constant)
and the result is then integrated with respect to y.

Remark 5.1.2. Contrary to the discrete case, a joint pdf might not exist. Here is the intuition.
Take X as the uniform random variable on [0, 1] and Y = X. Suppose that X and Y admit a
joint pdf fX,Y and let B = {(x, y) ∈ [0, 1] × [0, 1] : x = y} be the main diagonal of the unit
square. We have that P((X,Y ) ∈ B) = 1 and so

1 =

∫∫
(x,y)∈B

fX,Y (x, y) dxdy.

This double integral gives the volume of the region under the surface z = fX,Y (x, y) and
above B. But B has area 0, and so we expect the volume to be 0, not 1!

As in the discrete case, we can recover the densities of X and Y from the joint pdf:

Lemma 5.1.3. For continuous random variables X and Y with joint pdf fX,Y , we have

fX(x) =

∫ ∞
−∞

fX,Y (x, y) dy and fY (y) =

∫ ∞
−∞

fX,Y (x, y) dx.

Example 5.1.4 (Two-dimensional uniform pdf). Suppose S ⊆ R2 has finite area. We say
that the pair (X,Y ) of continuous random variables is uniformly distributed over S if the
joint pdf of X and Y is given by

fX,Y (x, y) =


1

area(S)
if (x, y) ∈ S;

0 otherwise.

The idea is that we pick a point (X,Y ) inside S at random and all points are equally likely.
This is similar to the 1-dimensional case of the uniform random variable on the interval [a, b]
(see Example 3.0.12).
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By definition of joint pdf, we then have that, for B ⊆ R2,

P((X,Y ) ∈ B) =

∫∫
(x,y)∈B

fX,Y (x, y) dxdy =

∫∫
(x,y)∈B∩S

1

area(S)
dxdy =

area(B ∩ S)

area(S)
,

where the second equality follows from the fact that fX,Y (x, y) = 0 for each (x, y) /∈ S, and
the last equality follows from the fact that the volume of the solid with baseB∩S and constant
height 1

area(S) is area(B∩S)
area(S) .

As a concrete example, consider the following situation. Suppose that a point is chosen
at random from an open unit disk. What is the probability that the sum of its coordinates is
larger than 1?

Let B1 = {(x, y) ∈ R2 : x2 + y2 < 1} be the open unit disk centered at the origin and
let (X,Y ) be the coordinates of our random point. It is reasonable to assume that (X,Y ) is
uniformly distributed over B1:

fX,Y (x, y) =


1

π
if (x, y) ∈ B1;

0 otherwise.

We need to compute P(X + Y > 1). It is then enough to compute the area of the intersection
between B1 and the half-plane {(x, y) ∈ R2 : x + y > 1}. Drawing a picture, it is easy to see
that this area is π

4 −
1
2 and so P(X + Y > 1) = 1

4 −
1

2π .

Example 5.1.5 (Buffon’s needle). We throw a needle of length ` at random on a surface
marked with horizontal lines at distance d (see Figure 5.1). Assume ` < d, so that the needle
can intersect at most one horizontal line. What is the probability that the needle will intersect
one of these lines?

X
Θ Θ

X

d

Figure 5.1

Consider the midpoint of the needle and the vertical segment between the midpoint and
the closest horizontal line (the dotted lines in Figure 5.1). Let X be the length of this segment
and let Θ be the acute angle between the needle and the segment. The pair of random
variables (X,Θ) uniquely determines the position of the needle and we may assume it is
uniformly distributed over R = [0, d2 ]× [0, π2 ]. We then have that

fX,Θ(x, θ) =


4

πd
if (x, θ) ∈ R;

0 otherwise.

The needle will intersect one of the lines if and only if

X

cos Θ
<
`

2
.
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Therefore, the desired probability is∫∫
(x,θ)∈A

fX,Θ(x, θ) dxdθ,

where A = {(x, θ) ∈ R2 : 0 ≤ x ≤ d/2, 0 ≤ θ ≤ π/2, x < ` cos θ/2}. The double integral can
be computed as follows:∫∫

(x,θ)∈A
fX,Θ(x, θ) dxdθ =

∫ π
2

0

∫ ` cos θ
2

0

4

πd
dxdθ =

2`

πd
.

This suggests a way to calculate π: Throw the needle a large number of times, count the
number of intersections in the first n tosses and divide by n. This will give an estimate of the
true probability 2`/πd and so

π ≈ 2n`

(#intersections in first n tosses) · d
.

A generalized version of LOTUS still holds:

Lemma 5.1.6. Let X and Y be continuous random variables with joint pdf fX,Y (x, y) and let
g : R2 → R. Then

E(g(X,Y )) =

∫ ∞
−∞

∫ ∞
−∞

g(x, y)fX,Y (x, y) dxdy.

In particular, E(aX + bY ) = aE(X) + bE(Y ).

Exercise 5.1.7. We throw a dart at a circular target centered at the origin and of radius r.
We assume that we always hit the target and that all points of impact (X,Y ) are equally likely.
Compute P(Y ≤ r/2).

Exercise 5.1.8. A husband and wife agree to meet at a street corner between 15:00 and 16:00
to go shopping together. The one who arrives first will await the other for 15 minutes, and then
leave. What is the probability that the two meet within the given time interval, assuming that
they can arrive at any time with the same probability?

5.2 Conditioning continuous random variables

Definition 5.2.1. Let X be a continuous random variable and let A be an event with P(A) >
0. The conditional pdf of X is the nonnegative integrable function fX|A satisfying

P(X ∈ B|A) =

∫
B
fX|A(x) dx,

for every B ⊆ R for which the integral exists.

Definition 5.2.2. The conditional expectation of a continuous random variable X is de-
fined as

E(X|A) =

∫ ∞
−∞

xfX|A(x) dx.

We then have the following continuous analogue of Corollary 4.4.3.
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Theorem 5.2.3. Let A1, . . . , An be a partition of Ω such that P(Ai) > 0 for each i and let X be
a continuous random variable. Then

(a) fX(x) =
∑n

i=1 fX|Ai(x) · P(Ai).

(b) E(X) =
∑n

i=1 E(X|Ai) · P(Ai).

Example 5.2.4. The metro train arrives every 15 minutes starting at 6am. You walk into the
station every morning between 7:10am and 7:30am with the time of arrival in this interval
being a uniform random variable. What is the pdf of the time you have to wait for the first
train?

Let X be the time of arrival. We know it is a uniform random variable on the interval
between 7:10 and 7:30. Let Y be the waiting time. We want fY (y). As the waiting time
depends on whether you manage to take the 7:15 train or not, we consider the following
partition:

A1 = {7 : 10 ≤ X ≤ 7 : 15} A2 = {7 : 15 < X ≤ 7 : 30}.

Conditioned on A1, the arrival time is uniform on the interval 7:10-7:15 and so the waiting
time is uniform on [0, 5]. In other words,

fY |A1
(y) =


1

5
if 0 ≤ y ≤ 5;

0 otherwise.

Similarly, conditioned on A2, the arrival time is uniform on the interval 7:15-7:30 and so the
waiting time is uniform on [0, 15]. In other words,

fY |A2
(y) =


1

15
if 0 ≤ y ≤ 15;

0 otherwise.

By Theorem 5.2.3, we have that

fY (y) = P(A1)fY |A1
(y) + P(A2)fY |A2

(y).

Since X is uniform on the interval 7:10-7:30 of length 20, we know that P(A1) = 5/20 and
P(A2) = 15/20. Combining, we obtain

fY (y) =

®
1/10 if 0 ≤ y ≤ 5;

1/20 if 5 < y ≤ 15.

Continuing the analogy with discrete random variables, we would now like to condition
on events of the form Y = y. But we know that if Y is continuous, P(Y = y) = 0. How do we
interpret then probabilities of the form P(X ∈ A|Y = y)? We will make use of the following
notion.

Definition 5.2.5. Let X and Y be continuous random variables with joint pdf fX,Y . For any
fixed y with fY (y) > 0, the conditional pdf of X given that Y = y is defined by

fX|Y (x|y) =
fX,Y (x, y)

fY (y)
.
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Notice that it agrees with the definition of conditional pmf in the discrete case. Viewing
fX|Y (x|y) as a function of x, it has the same shape as fX,Y . The normalization by fY (y)
implies that fX|Y (x|y) is a legitimate pdf:∫ ∞

−∞
fX|Y (x|y) dx =

∫ ∞
−∞

fX,Y (x, y)

fY (y)
dx =

1

fY (y)

∫ ∞
−∞

fX,Y (x, y) dx =
fY (y)

fY (y)
= 1.

But how do we interpret fX|Y (x|y)? Fix small δ1 and δ2 and consider the following conditional
probability:

P(x ≤ X ≤ x+ δ1|y ≤ Y ≤ y + δ2) =
P(x ≤ X ≤ x+ δ1, y ≤ Y ≤ y + δ2)

P(y ≤ Y ≤ y + δ2)

=

∫ x+δ1
x

∫ y+δ2
y fX,Y (x, y) dydx∫ y+δ2
y fY (y) dy

≈
fX,Y (x, y)δ1δ2

fY (y)δ2

= fX|Y (x|y)δ1.

Letting δ2 → 0, we have that P(x ≤ X ≤ x+ δ1|Y = y) should approximately be fX|Y (x|y)δ1

for small δ1. We then make the following definition in the continuous case:

P(X ∈ A|Y = y)
def
=

∫
A
fX|Y (x|y) dx.

Example 5.2.6. We throw a dart at a circular target of radius r. We assume that we always
hit the target and that all points of impact (X,Y ) are equally likely. In other words, we assume
that the joint pdf of X and Y is

fX,Y (x, y) =


1

πr2
if x2 + y2 ≤ r2;

0 otherwise.

What is the conditional pdf fX|Y (x|y)? We first compute the marginal fY (y). By Lemma 5.1.3,

fY (y) =

∫ ∞
−∞

fX,Y (x, y) dx =


0 if |y| > r;∫
x:x2+y2≤r2

1

πr2
dx =

∫ √r2−y2
−
√
r2−y2

1

πr2
dx =

2

πr2

√
r2 − y2 if |y| ≤ r.

Therefore, fX|Y (x|y) = 1

2
√
r2−y2

.

Definition 5.2.7. The conditional expectation E(X|Y = y) is defined as
∫∞
−∞ xfX|Y (x|y) dx.

We have that E(g(X)|Y = y) =
∫∞
−∞ g(x)fX|Y (x|y) dx. Moreover, the following version of

the total expectation theorem holds:

Theorem 5.2.8. Let X and Y be continuous random variables. Then

E(X) =

∫ ∞
−∞

E(X|Y = y)fY (y) dy.
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Independence is defined exactly as in the discrete case.

Definition 5.2.9. Two continuous random variablesX and Y are independent if fX,Y (x, y) =
fX(x)fY (y) for each x, y.

Exactly as in the discrete case, if X and Y are independent, then the events {X ∈ A} and
{Y ∈ B} are independent. Indeed,

P(X ∈ A, Y ∈ B) =

∫
X∈A

∫
Y ∈B

fX,Y (x, y) dydx

=

∫
X∈A

∫
Y ∈B

fX(x)fY (y) dydx

=

∫
X∈A

fX(x)

∫
Y ∈B

fY (y) dydx

=

Å∫
Y ∈B

fY (y) dy

ãÅ∫
X∈A

fX(x) dx

ã
= P(Y ∈ B)P(X ∈ A).

The following properties, which were shown for discrete random variables, remain true in
the continuous case.

Lemma 5.2.10. Let X and Y be independent continuous random variables and let g and h be
two functions such that g(X) and h(Y ) are continuous. The following hold:

• g(X) and h(Y ) are independent;

• E(XY ) = E(X)E(Y );

• E(g(X)h(Y )) = E(g(X))E(h(Y ));

• var(X + Y ) = var(X) + var(Y ).

Exercise 5.2.11. A service station has a slow server (server 1) and a fast server (server 2).
Upon arrival at the station, you are routed to server i with probability pi, for i ∈ {1, 2}, where
p1 + p2 = 1. The service time at server i is an exponential random variable with parameter λi.
What is the pdf of your service time at the station?

5.3 Normal random variables

Definition 5.3.1. A continuous random variable X is normal if it has pdf given by

fX(x) =
1√
2πσ

e−
(x−µ)2

2σ2 ,

for some parameters µ, σ with σ > 0. We write X ∼ N(µ, σ2). If µ = 0 and σ = 1, X is called
standard normal.

It can be shown that ∫ ∞
−∞

1√
2πσ

e−
(x−µ)2

2σ2 dx = 1
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and so fX(x) is a legitimate pdf. The parameter µ is the “center” of the density. Indeed, fX(x)
is symmetric around µ i.e., fX(µ + x) = fX(µ − x). The parameter σ is the “spread” of the
density. The graph of fX(x) has a characteristic bell shape symmetric around the line x = µ.

The importance of the normal random variable is mainly due to the Central limit theorem.
Loosely speaking, it asserts that the distribution of the sum of a large number of i.i.d. random
variables is approximated by the normal distribution.

It turns out that the parameters µ and σ are nothing but the expectation and the standard
deviation, respectively:

Lemma 5.3.2. Let X ∼ N(µ, σ2). Then E(X) = µ and var(X) = σ2.

Theorem 5.3.3. Normality is preserved by linear transformations. Namely, if X ∼ N(µ, σ2),
then Y = aX + b ∼ N(aµ+ b, a2σ2).

Proof. We look for the pdf of Y and obtain it by differentiating the distribution function.
Suppose that a > 0 (the case a ≤ 0 is similar).

FY (y) = P(Y ≤ y) = P(aX + b ≤ y) = P
Å
X ≤ y − b

a

ã
= FX

Å
y − b
a

ã
.

By the Chain rule and recalling the pdf of X,

fY (y) =
dFY
dy

(y) =
1

a
· fX
Å
y − b
a

ã
=

1

a
· 1√

2πσ
e−

((y−b)/a−µ)2

2σ2 =
1√

2πaσ
e−

(y−b−aµ)2

2a2σ2 ,

as claimed.

If X is normal, we have that

P(X ≤ x) =

∫ x

−∞
fX(x) dx =

∫ x

−∞

1√
2πσ

e−
(x−µ)2

2σ2 dx.

Unfortunately, the function e−x
2

has no elementary antiderivative i.e., its antiderivative can-
not be expressed as a sum, product, composition of finitely many polynomials, rational func-
tions, trigonometric and exponential functions, and their inverse functions. On the other
hand, in order to compute probabilities involving the normal random variable, we need to
somehow compute the integral above. The lack of an elementary antiderivative is bypassed
by computing approximations of the integral above, in the case µ = 0 and σ = 1, via nu-
merical integration. These approximated values are then stored in tables (see Figure 5.2) and
allow to determine an approximate value of P(X ≤ x), for each x. Notice that the distribution
function FX(x) = P(X ≤ x) of a standard normal is usually denoted by Φ(x).

But in order to use these tables, how do we pass from a normal random variable X with
parameters µ and σ to a standard normal? The answer is already in Theorem 5.3.3:

Y =
X − µ
σ

∼ N(0, 1).

We can then use this linear transformation and its inverse to jump from generic normal to
standard normal and vice versa.
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Figure 5.2: Table storing values of Φ(z).

Example 5.3.4. The annual snowfall at a particular location is modelled as a normal random
variable with mean µ = 60 (in inches) and σ = 20. What is the probability that this year’s
snowfall will be at least 80 inches?

Let X be the snow accumulation. We need to compute P(X ≥ 80) = 1 − P(X ≤ 80). To
compute the latter, since we need to resort to the tables, we first pass to the standard normal
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random variable Y = X−60
20 . We have that P(X ≤ 80) = P(20Y + 60 ≤ 80) = P(Y ≤ 1). We

then check the approximate value of P(Y ≤ 1) in the tables: it is 0.8413 (see Figure 5.2).

Example 5.3.5. A binary message is transmitted as a signal which is either −1 or 1. The
communication channel corrupts the transmission with additive normal noise with mean µ =
0 and variance σ2. The receiver concludes that the signal −1 (or 1) was transmitted if the
value received is smaller than 0 (or at least 0). What is the probability of an error?

Let N be the noise and S be the signal. We have an error if −1 is transmitted and N ≥ 1
(as this gives N + S ≥ 0) or if 1 is transmitted and N < −1 (as this gives N + S < 0). We
want to compute P(N ≥ 1) and P(N < −1). As N is normal with µ = 0, we know that these
two values are the same. We then pass to the standard normal N ′ = N−µ

σ = N
σ and compute

P(N ≥ 1) = 1− P(N < 1) = 1− P(σN ′ < 1) = 1− P(N ′ < 1/σ).

Exercise 5.3.6. Let X ∼ N(5, 16).

1. Compute P(X > 3);

2. Find the value of c such that P(|X − 5| < c) = 0.9.

Exercise 5.3.7. Prove Lemma 5.3.2.

5.4 Central limit theorem

Let X1, X2, . . . be a sequence of i.i.d. random variables with mean µ and variance σ2 (not
necessarily normal random variables) and let Sn = X1 + · · · + Xn. The Weak law of large
numbers tells us that the distribution of Sn/n concentrates around its mean µ as n becomes
large. The Central limit theorem goes further and quantifies the behavior of the “fluctuations”
of Sn around its mean nµ.

Consider the following rescaling of Sn − E(Sn):

Zn =
Sn − E(Sn)√

var(Sn)
=
X1 + · · ·+Xn − nµ

σ
√
n

.

Theorem 5.4.1 (Central limit theorem). Let X1, X2, . . . be a sequence of i.i.d. random vari-
ables with mean µ and variance σ2 and let

Zn =
X1 + · · ·+Xn − nµ

σ
√
n

.

Then limn→∞ P(Zn ≤ z) = Φ(z) for any z ∈ R, where

Φ(z) =

∫ z

−∞

1√
2π
e−

x2

2 dx.

The Central limit theorem has several important consequences:

It first tells us that the “fluctuations” of Sn around its mean nµ are of order
√
n. More-

over, the behavior of these fluctuations is universal: no matter what the distribution of
the Xi’s is, the asymptotic distribution of the “fluctuations” is standard normal.

It also answers the question: How does Sn behave for large n?
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For n large, probabilities of the form P(Sn ≤ c) can be approximated as follows:

1. Compute mean nµ and variance nσ2 of Sn.

2. Compute z = c−nµ
σ
√
n

.

3. Use the approximation P(Sn ≤ c) ≈ Φ(z), where the value of Φ(z) can be found
from tables.

Let us justify these steps. For large n, the Central limit theorem implies that

Φ(z) ≈ P(Zn ≤ z) = P
Å
Sn − nµ
σ
√
n
≤ z
ã

= P(Sn ≤ zσ
√
n+ nµ).

Therefore, letting z as in 2., we obtain the approximation in 3.

Example 5.4.2. The number of students X who are going to fail in the exam is a Poisson
random variable with mean 100. What is the probability that at least 120 students will fail?

Since X is Poisson with mean 100 (and so λ = 100), we know that the desired probability
is

P(X ≥ 120) = 1− P(X ≤ 119) = 1−
119∑
k=0

e−100100k

k!
.

If we are just interested in an approximate value of this complicated sum, we can use the
procedure described above. We can express X as a sum of 100 independent Poisson random
variables X1, . . . , X100, each with mean 1 and variance 1 (see Example 4.5.3). Checking
Figure 5.2, we then have that

P(X ≤ 119) ≈ Φ

Å
119− 100 · 1

1 ·
√

100

ã
= Φ(1.9) = 0.9713.

Example 5.4.3. We load on a plane 100 packages whose weights are independent random
variables uniformly distributed between 5kg and 50kg. What is the probability that the total
weight will exceed 3000kg?

Let S100 be the sum of weights of the 100 packages. We compute an approximate value for
the desired probability P(S100 > 3000) by following the procedure above. We first need mean
and variance of a uniform random variable on [5, 50]: µ = 27.5 and σ2 = 168.75. Letting
z = 3000−100·27.5√

168.75·100
= 1.92, we get P(S100 ≤ 3000) ≈ Φ(1.92) = 0.9726.

Example 5.4.4. A machine processes parts one at a time. The processing times of different
parts are independent random variables uniformly distributed on [1, 5]. Find an approximate
value for the probability that the number of parts processed within 320 time units is at least
100.

Let N320 be the random number of interest. We need to approximate P(N320 ≥ 100). It is
not clear how to express N320 as a sum of i.i.d. random variables. On the other hand, let Xi

be the processing time of the i-th part and let S100 = X1 + · · · + X100. The events {N320 ≥
100} and {S100 ≤ 320} are the same and so we can apply our approximation procedure to
S100. We have that E(Xi) = 3 and var(Xi) = 4/3. Therefore, z = 320−100·3√

100·4/3
= 1.73 and so

P(N320 ≥ 100) = P(S100 ≤ 320) ≈ Φ(1.73) = 0.9582.
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Exercise 5.4.5. A local telephone exchange with 2000 subscribers is to be connected to a central
exchange by trunk lines. Suppose that during the busy period each subscriber requires a trunk
line for an average of 2 minutes per hour. How many lines should be installed to ensure that at
least 99% of calls find an idle trunk line?
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