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Chapter 1

Probability

Uncertainty and randomness are unavoidable aspects of our experience: play cards, invest in shares,
etc. Although probability has been around for several centuries, it wasn’t until recently that the subject
was made rigorous. In the thirties, Kolmogorov showed that it is full-fledged analysis, more precisely,
measure theory.

The first part of the module is devoted to formally introducing the objects of probability. In other
words, the goal is to abstract the common features arising in everyday examples in order to build a
probabilistic model i.e., a mathematical description of an uncertain situation. The advantage of taking
an abstract approach is that it allows to develop general tools that can be adapted to several specific
situations. We start with the following definition.

Definition 1.0.1. Any well-defined procedure or chain of circumstances is called an experiment. The
end result, or occurrence, is the outcome of the experiment, also known as elementary event. The set
of all possible outcomes is the sample space, denoted by Ω.

Experiment Possible outcomes
Roll a die Ω = {1, 2, 3, 4, 5, 6}
Toss a coin Ω = {H, T}
Infinite sequence of coin tosses Ω is the set of all possible infinite sequences of H and T

In the first two experiments Ω is finite, whereas in the third it is infinite. Typically, rather than
individual outcomes of the sample space, we are interested in collections of outcomes.

Experiment Set of outcomes of interest
Roll a die The outcome is an even number
Toss a coin The outcome is either H or T
Infinite sequence of coin tosses The outcome consists of finitely many H

These collections of outcomes are associated to the intuitive notion of event, which is then a subset
of the sample space. If the result of the experiment belongs to this subset, we would say that the event
occured. Thinking of events as subsets of the sample space, we can then perform on them the usual
set-theoretic operations.

2
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Notation Set jargon Probability jargon
Ω Collection of objects Sample space
ω Member of Ω Outcome (also called elementary event)
A Subset of Ω A occurs (more precisely, some outcome in A occurs)
Ac Complement of A A does not occur (more precisely, no outcome in A occurs)
A ∩B Intersection Both A and B occur
A ∪B Union At least one of A and B occurs
A \B Difference A occurs but not B
A ⊆ B Inclusion If A occurs then B occurs

We would ultimately like to assign a probability to an event and so the natural question is: Is there
any property events should satisfy? As already observed, in general, the sample space might be infinite
and the events we are interested in might contain infinitely many outcomes:

Example 1.0.2. A coin is tossed until the first head turns up and we are concerned with the number
of tosses before this happens. We let Ω = {ω1, ω2, . . . }, where ωi denotes the outcome “the first i − 1
tosses are tails and the i-th is head”. We might be interested in the following event A: “the first head
occurs after an even number of tosses”. Clearly, A = {ω2, ω4, . . . } =

⋃∞
i=1{ω2i} is a countable union of

members of Ω i.e., elementary events.

Let’s recall the important notion of countable set.

Definition 1.0.3. A set is countable if it is in bijection with a subset of the set of positive integers. A
set is uncountable if it is not countable.

Example 1.0.4. The set of positive integers is obviously countable. Every finite set is countable. The
set of rational numbers is countable. The set of all infinite 0, 1 sequences is uncountable: this can be
shown using Cantor’s diagonal argument. Other examples of uncountable sets are R and its subinterval
(0, 1).

We need also to recall the notions of union and intersection of a collection of subsets:

Definition 1.0.5. Let C be a collection of subsets of a setX. The subset ofX containing all elements that
belong to at least one set of C is the union of the collection C, denoted by

⋃
C. If C = {Ai : i = 1, . . . , n}

is finite, we usually write
⋃
C =

⋃n
i=1Ai. If C = {Ai : i ∈ N} is countable infinite, we usually write⋃

C =
⋃∞
i=1Ai.

The subset ofX containing all elements that belong to all sets of C is the intersection of the collection
C, denoted by

⋂
C. If C = {Ai : i = 1, . . . , n} is finite, we let

⋂
C =

⋂n
i=1Ai. If C = {Ai : i ∈ N} is

countable infinite, we let
⋂
C =

⋂∞
i=1Ai.

The following relations between unions and intersections will be used repeatedly.

Example 1.0.6 (De Morgan’s laws). “It will not snow or rain” means “It will not snow and it will not
rain”. If S is event that it snows and R is event that it rains, then (S ∪ R)c = Sc ∩ Rc. “It will not both
snow and rain” means “Either it will not snow or it will not rain” i.e., (S ∩R)c = Sc ∪Rc.

More generally, let {Ai : i ∈ I} be a collection of sets with I countable. ThenÅ⋃
i

Ai

ãc
=
⋂
i

Aci and
Å⋂

i

Ai

ãc
=
⋃
i

Aci .
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1.1 Sigma-fields and probability measures

Back to our question: which subsets of the sample space Ω are events? There are certain requirements
that we wish the collection of events to satisfy:

• Ω is an event: this is the trivial event that something happened.

• If A ⊆ Ω is an event, so is Ac: if we are allowed to ask whether A has occurred, we should also be
allowed to ask whether A has not occurred.

• If A1, A2, . . . ⊆ Ω are events, so is their union
⋃∞
i=1Ai: if we are allowed to ask whether each Ai

has occurred, we should also be allowed to ask whether at least one of the Ai’s has occurred, as
seen in Example 1.0.2.

Definition 1.1.1. A collection F of subsets of Ω is called a σ-field (or σ-algebra) if it satisfies the
following conditions:

1. Ω ∈ F ;

2. If A ∈ F , then Ac ∈ F ;

3. If A1, A2, . . . ∈ F , then
⋃∞
i=1Ai ∈ F .

Our events will form a σ-field of the sample space Ω. Why don’t we go further and allow uncountable
unions? Well, our unions here will be closely tied to sums of probabilities and uncountable sums can be
extremely messy.

Remark 1.1.2. Notice that 1. and 2. imply that ∅ ∈ F . Moreover, if A1, A2, . . . ∈ F is a countable
subfamily of F then, by De Morgan’s laws,

⋂∞
i=1Ai = (

⋃∞
i=1A

c
i )
c ∈ F . Notice also that, since ∅ ∈ F , we

can extend any finite subfamily A1, . . . , An of F to a countable family by setting Aj = ∅ for each j > n.
Therefore, finite unions and intersections of members of F are still in F . Moreover, if A,B ∈ F , then
A \B = A ∩Bc ∈ F .

In other words, we have verified that:

A σ-field is stable (or closed) under countable set operations.

Example 1.1.3. The following are some examples of σ-fields:

• {∅,Ω} is a σ-field of Ω.

• The power set of Ω is a σ-field of Ω.

• For any A ⊆ Ω, {∅, A,Ac,Ω} is a σ-field of Ω.

• The collection of all open intervals of R is not a σ-field. Indeed,
⋂∞
n=1(− 1

n ,
1
n) = {0} is not an open

interval.

Exercise 1.1.4. Write down all σ-fields on {a, b}.

Exercise 1.1.5. Let Ω be an infinite set and let A = {A ∈ Ω : A is finite or Ac is finite}. Show that A is
not a σ-field.
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A natural question might arise: Why not simply taking the power set of Ω all the time for our
probabilistic interests? The reason is that, if Ω is uncountable, its power set is too rich and it turns out
to be impossible to assign probabilities in a consistent fashion to all possible subsets. Luckily, in many
situations, for example when Ω is countable, we can indeed simply consider the power set of Ω.

But let’s deal with the general situation. If C is a collection of some basic events that we want to be
able to discuss, we have seen that it is not necessarily a σ-field. What is typically done is to enlarge such
a collection so that it in fact becomes one. This is done by considering the following notion.

Definition 1.1.6. Let C be a collection of subsets of Ω. The σ-field generated by C, denoted σ(C) is the
smallest σ-field on Ω containing the collection C.

Remark 1.1.7. Some cautionary words on language. We say that a σ-field F contains the collection C if
each member of C belongs to F (i.e., every set in C is a set in F). For two σ-fields F1 and F2, we say
that F1 is smaller than F2 if F1 ⊆ F2.

Notice that we need to verify that this notion is well-defined!

Lemma 1.1.8. Let C be a collection of subsets of Ω. Then the σ-field σ(C) generated by C exists and is
unique.

Proof. Uniqueness is trivial: If we have two smallest σ-fields containing C, say F1 and F2, then F1 ⊆ F2

and F2 ⊆ F1.
Consider now existence. Let S be the collection of all σ-fields on Ω containing C. Notice that S

is nonempty, as the power set of Ω belongs to S . We claim that
⋂
F∈S F is the smallest σ-field on Ω

containing C. There are three things to be checked:

•
⋂
F∈S F is a σ-field.

Here we need to check the three properties in Definition 1.1.6:

1. Since each F ∈ S is a σ-field on Ω, Ω ∈ F for each F ∈ S and so Ω ∈
⋂
F∈S F .

2. Let A ∈
⋂
F∈S F . Then A ∈ F for each F ∈ S and so Ac ∈ F for each F ∈ S . Therefore,

Ac ∈
⋂
F∈S F .

3. Let A1, A2, . . . ∈
⋂
F∈S F . Then A1, A2, . . . ∈ F for each F ∈ S . But

⋃∞
i=1Ai ∈ F for each

F ∈ S and so
⋃∞
i=1Ai ∈

⋂
F∈S F .

•
⋂
F∈S F contains C.

This follows from the fact that, for each F ∈ S , F contains C.

•
⋂
F∈S F is the smallest σ-field containing C.

Let G be any σ-field containing C. Then G ∈ S and so
⋂
F∈S F ⊆ G.

In order to define what is arguably the most important σ-field on Rn, we need a little bit of topology.

Definition 1.1.9. A subset U ⊆ R is open if, for each x ∈ U , there exists ε > 0 such that the open
interval centered at x and with radius ε is contained in U . In other words, (x− ε, x+ ε) ⊆ U .

More generally, a subset U ⊆ Rn is open if, for each x ∈ U , there exists ε > 0 such that the open ball
centered at x and with radius ε is contained in U . In other words, Bε(x) = {y ∈ Rn : |x− y| < ε} ⊆ U ,
where |x− y| denotes the Euclidean distance in Rn between x and y.
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x

ε

Bε(x)
U

Figure 1.1: The open ball Bε(x) in R2 and an example of an arbitrary open set U ⊆ R2: for each of its points x there exists a
sufficiently small open ball centered at x and contained in U .

Example 1.1.10. Every open interval in R is open. Similarly, every open disk in R2 is open. For each
x ∈ R, {x}c is an open set in R but {x} is obviously not open. More generally, the closed interval [x, y]
is not open but [x, y]c is.

Exercise 1.1.11. Let U1 and U2 be two open sets in Rn. Is U1 ∩ U2 open?

Exercise 1.1.12. Show that every open set in Rn is a union of open balls.

Definition 1.1.13. The Borel σ-field B on Rn is the σ-field generated by the open sets in Rn. The sets
in B are called Borel sets.

The Borel σ-field on the real line is extremely important in probability theory and will appear again
when we will talk about random variables. Rather than taking the whole family of open sets, it can in
fact be equivalently generated by open intervals, closed intervals, half-lines, etc.

Proposition 1.1.14. The Borel σ-field on the real line R is generated by any of the following collections of
subsets of R:

• C = {(−∞, x] : x ∈ R};

• C = {(x, y) : x, y ∈ R, x < y};

• C = {[x, y] : x, y ∈ R, x ≤ y};

• C = {(x, y] : x, y ∈ R, x < y}.

Remark 1.1.15. Proposition 1.1.14 says that the smallest σ-field on R containing all open sets can be
generated by the family of closed intervals. This might appear odd, as closed intervals are not open.
But recall that σ-fields are closed under complementation, and it is by taking complements of closed
intervals (and their intersections and unions) that we manage to get the open sets.

Example 1.1.16. Since B is a σ-field containing all open sets, it contains all singletons {x}, as {x}c is
an open set in R.

To any experiment we will then associate the pair (Ω,F), where Ω is the set of all possible outcomes
(elementary events) and F is a σ-field of subsets of Ω. We will try to assign a probability to each set in
F and in order to do so, we will again be guided by intuition.

Suppose that an experiment has several possible outcomes that are not necessarily equally likely.
How can we define the probability of a certain event A? One intuitive way is the following. We run
the experiment a large number N of times, keeping the initial conditions as equal as possible. Denoting
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by N(A) the number of occurences of A after the first N trials, we would expect that when N becomes
larger and larger, the ratio N(A)/N converges to some finite limit. We may then define the probability
P(A) that A occurs on a particular trial as this limit. In any case, for large N , N(A)/N should be an
approximation of P(A). Notice that

• 0 ≤ N(A)/N ≤ 1;

• If A = ∅, then N(A)/N = 0. If A = Ω, then N(A)/N = 1;

• If A and B are disjoint events, then N(A ∪B) = N(A) +N(B) and so N(A ∪B)/N = N(A)/N +
N(B)/N .

With the observations above in mind and recalling Example 1.0.2, we state the following:

Definition 1.1.17. A probability measure P on (Ω,F) is a function P : F → R satisfying the following:

1. For each A ∈ F , we have 0 ≤ P(A) ≤ 1;

2. P(∅) = 0 and P(Ω) = 1;

3. For every countable infinite collection A1, A2, . . . of mutually disjoint members of F (i.e., Ai∩Aj =
∅ for each i 6= j), we have

P
Å ∞⋃
i=1

Ai

ã
=
∞∑
i=1

P(Ai)
1.

The triple (Ω,F ,P) consisting of a set Ω, a σ-field F of subsets of Ω and a probability measure P
on (Ω,F) is called a probability space. Any set in F is called event.

Observation 1.1.18. The axioms P(∅) = 0 and P(A) ≤ 1 in Definition 1.1.17 are in fact redundant i.e.,
they can be deduced from the others. Check it!

Remark 1.1.19. The event Ω is the sure event: it contains all possible outcomes and P(Ω) = 1. It is
worth noting that there may be also other events E ∈ F such that P(E) = 1. Such events are called
almost sure.

Countable additivity (the last condition in the definition) readily implies the following result:

Lemma 1.1.20 (Finite additivity). Let (Ω,F ,P) be a probability space. For every finite collectionA1, A2, . . . , An
of mutually disjoint members of F , we have

P
Å n⋃
i=1

Ai

ã
=

n∑
i=1

P(Ai).

Proof. Define Am = ∅ for each m > n. Since ∅ ∈ F and the newly defined countable infinite collection
A1, A2, . . . consists of mutually disjoint members of F , we use countable additivity to conclude.

Remark 1.1.21. As mentioned above, in many cases, we can takeF as the power set of Ω. But sometimes
it is simply not possible to assign a consistent probability to all subsets of Ω. Here is the rough intuition.

Choose a number at random from the interval [0, 1] i.e., no number is more likely than any other. We
expect that the probability that the number falls in any sub-interval [a, a+h] is the same as the probability
it falls in any other sub-interval of the same length. The probability must then be proportional to the
length of the interval and, since the whole interval has length one, we conclude that the probability of

1Notice that we are requiring this series to be convergent.
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falling in a sub-interval of [0, 1] is actually equal to its length. The problem is that we cannot define the
length of every subset of [0, 1]! One example of a set without a determinable length is the so-called Vitali
set. The good news is that these sets are hard to construct and have no practical importance. However,
should we not take into account these obstructions, our complete theoretical machinery would collapse!

The conceptual construction of a probability space has no absolute physical meaning, it is just
guided by some intuitive physical interpretation. The properties which the measure P is required
to satisfy are usually called the probability axioms and were introduced by Kolmogorov, though
not exactly in the form above (see Observation 1.1.18). The first two axioms are just a matter of
convention. The key one is countable additivity.

Think of a probability space as the mathematical description of an experiment. For example, tossing a
coin, rolling dice, taking a number in a lottery, etc. In each case, there is a certain amount of randomness,
or unpredictability in the experiment. To describe this mathematically, start with what we observe: the
outcome. Ω is the set of all possible outcomes of the experiment: each point of Ω represents an outcome.
An event is a set of outcomes belonging to the σ-field F . The probability measure gives the probability of
events. We can associate a probability space (Ω,F ,P) with any experiment. The informations allowing
us to compute the actual value of P(A) are contained in the description of the experiment.

Example 1.1.22. Suppose the experiment is rolling a die i.e., a cube whose six faces are numbered 1
to 6. We can take Ω = {1, 2, 3, 4, 5, 6} as the set of outcomes and, since Ω is countable, the power set of
Ω as the σ-field F . To get the probability measure, we note that if the die is well-made, the six sides are
identical except for their label. No side can be more probable than another. Therefore,

P({1}) = P({2}) = · · · = P({6}).

The probabilities in the preceding example were derived from symmetry considerations: the possible
outcomes were indistinguishable except by their labels. In fact, this is about the only situation in which
we can confidently assign probabilities by inspection. But luckily, while nature is not always obliging
enough to divide itself into equally-likely pieces, one can start with the equally-likely case and then
determine the probabilities in more complex situations. Which is what the subject is about.

The idea of symmetry applies to events, not just outcomes. Consider a physical experiment with
finitely or countably many outcomes, labeled in some convenient fashion.

Symmetry principle: If two events are indistinguishable except for the way the outcomes are
labeled, they are equally likely.

For example, roll a die and consider the events “even” and “odd”, i.e., {2, 4, 6} and {1, 3, 5}. If we
physically renumber the faces of the die, so that we interchange n and 7−n on each face, so that 1↔ 6,
2↔ 5 and 3↔ 4, then the events “even” and “odd” are interchanged. The symmetry principle says that
the two events must have the same probability.

Example 1.1.23. Suppose the experiment is tossing a coin. We can take Ω = {H,T}, F = 2Ω =
{∅, H, T,Ω} and P defined by

P(Ω) = 1, P(∅) = 0, P(H) = p, P(T ) = 1− p,

where p is a fixed real number in [0, 1]. If p = 1/2, we say that the coin is fair.



CHAPTER 1. PROBABILITY 9

Remark 1.1.24. The probability space for an experiment is not unique. This is useful in practice: it
allows us to choose the probability space which works best in the particular circumstances, or to not
choose one at all; we do not always have to specify the probability space. It is usually enough to know
that it is there if we need it.

The simplest probability spaces are those whose sample space Ω = {ω1, ω2, . . . } contains countably
many outcomes (we call such probability spaces, countable probability spaces). Recall that in such
cases we may always take as σ-field F the power set 2Ω. For countable probability spaces, a probability
measure P on F is fully determined by the values assigned to the elementary events ωi. Indeed, consider
an event A ⊆ Ω. Since A is countable (infinite or finite), then

A =
⋃
ω∈A
{ω}

can be expressed as a countable union of elementary events. Since these events are obviously mutually
disjoint, it follows from countable additivity (or finite additivity) that

P(A) =
∑
ω∈A

P({ω}).

Suppose now that the sample space Ω is finite and that P({ω}) = p, for each elementary event ω ∈ Ω.
By the probability axioms, we have

1 = P(Ω) =
∑
ω∈Ω

P({ω}) = p|Ω|,

from which p = 1/|Ω|. Therefore, the probability of the event A is

P(A) =
∑
ω∈A

P({ω}) = p|A| = |A|
|Ω|

.

Observation 1.1.25. A probability space is a model for an experiment. A priori there is no reason why
all outcomes should be equally probable. It is an assumption that should be made only when believed to be
applicable.

Example 1.1.26. Two fair dice are rolled. What is the probability that the sum is 7?
A convenient sample is constructed by viewing the two dice as distinguishable (say one blue and one

red) and taking Ω = {(i, j) : 1 ≤ i, j ≤ 6} . By symmetry, it is natural to assume that each of the |Ω| = 36
outcomes is equally likely. The event “sum equals 7” is A = {(1, 6), (2, 5), (3, 4), (4, 3), (5, 2), (6, 1)} and
so P(A) = |A|/|Ω| = 1/6.

Observation 1.1.27. How do we know which probability space to assign to each experiment? Well, a
model is a model: it may or may not relate to reality. In the previous example, we applied symmetry, as we
believe that all outcomes of the experiment are equally likely.

Example 1.1.28. A tea set has four cups and saucers with two cups and saucers in each of two different
colors, say a and b. If the cups are placed at random on the saucers, what is the probability that no cup
is on a saucer of the same color?

As a sample space, we consider the distinct ways of arranging the cups by color with the saucers
fixed (suppose without loss of generality the saucers are listed as aabb). There are six possible ways of
arranging the cups: aabb, abba, abab, baab, baba, bbaa. By symmetry, they are equally likely. Since only
one of these arrangements has no cup on a saucer of the same color, the required probability is 1/6.
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How did we know there are exactly six possible ways? Well, that corresponds to the number of ways
of placing the cups of color a. Indeed, for each such a choice, the positions of the cups of color b are
forced. But then this is the general problem of counting the number of ways a subset of size k can be
chosen from a set of size n ≥ k or, equivalently, the number of subsets of size k of a set of size n. Let us
first count the number of ordered subsets of size k of a set of size n. We have n choices for the element
in first position. For each such a choice, we have n− 1 choices for the element in second position and so
on up to n− (k − 1) choices for the last element in position k. Overall,

n · (n− 1) · (n− 2) · · · (n− k + 1) =
n!

(n− k)!

ordered subsets. Of course, if we are interested in unordered subsets, then we have overcounted: every
subset was counted exactly k! times (with every possible ordering of its elements). So we have to divide
by k!.

Lemma 1.1.29. The number of subsets of size k of a set of size n is

n!

k!(n− k)!
,

denoted by
(n
k

)
. The numbers

(n
k

)
are called binomial coefficients.

Exercise 1.1.30. A bag contains 2021 red balls and 2021 black balls. We remove two balls at a time
repeatedly and

• discard them if they are of the same color;

• discard the black ball and return to the bag the red ball if they are of different colors.

What is the probability that this process will terminate with one red ball in the bag? Hint: What are the possible outcomes?

Back to our generic probability space (Ω,F ,P), our goal is now to derive several useful properties
from the probability axioms.

Lemma 1.1.31. Let (Ω,F ,P) be a probability space and let A,B ∈ F be events. The following are true:

(a) P(Ac) = 1− P(A);

(b) If A ⊆ B, then P(B) = P(A) + P(B \A) ≥ P(A) (monotonicity);

(c) P(A ∪B) = P(A) + P(B)− P(A ∩B) (inclusion-exclusion).

Proof. Notice first that, as observed in Remark 1.1.2, all the sets considered belong to F and so we can
indeed talk about their probabilities.

(a) Since A∩Ac = ∅ and A∪Ac = Ω, finite additivity and the 2nd axiom imply that P(A) +P(Ac) =
P(Ω) = 1.

(b) Since A ∩ (B \ A) = ∅ and A ∪ (B \ A) = B, finite additivity and the 2nd axiom imply that
P(A) + P(B \A) = P(B). Since P(B \A) ≥ 0 (1st axiom), we then have that P(B) ≥ P(A).

(c) A ∪B can be written as the disjoint union A ∪ (B \A). We then have that,

P(A ∪B) = P(A) + P(B \A) = P(A) + P(B \ (A ∩B)) = P(A) + P(B)− P(A ∩B),

where in the first equality we use additivity, in the second the fact that B \ A = B \ (A ∩ B) and in the
third (b).
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Example 1.1.32. Let (Ω,F ,P) be a probability space and let A,B ∈ F be events. Although P(A) =
P(A ∩B) is obviously false in general, it is true if P(B) = 1. Indeed, in this case

P(A ∩B) = P(A) + P(B)− P(A ∪B) = P(A) + (1− P(A ∪B)) ≥ P(A).

The reverse inequality always holds by monotonicity.

Recall the following fact from analysis: If f : R→ R is a continuous function at x0 and the sequence
x1, x2, . . . converges to x0, then the sequence f(x1), f(x2), . . . converges to f(x0) (if you haven’t seen it,
try to show it!). A similar statement holds for probability measures.

Lemma 1.1.33 (Continuity of probability). Let (Ω,F ,P) be a probability space. For every increasing
sequence of events A1, A2, . . . (i.e., A1 ⊆ A2 ⊆ · · · ), we have that

P
Å ∞⋃
i=1

Ai

ã
= lim

i→∞
P(Ai).

Similarly, for every decreasing sequence of events B1, B2, . . . (i.e., B1 ⊇ B2 ⊇ · · · ), we have that

P
Å ∞⋂
i=1

Bi

ã
= lim

i→∞
P(Bi).

Proof. Consider the case of an increasing sequence A1 ⊆ A2 ⊆ · · · . We write
⋃∞
i=1Ai as the disjoint

union A1 ∪ (A2 \A1)∪ (A3 \A2)∪ · · · . By countable additivity and recalling the definition of a sum of a
series, we have

P
Å ∞⋃
i=1

Ai

ã
= P(A1) +

∞∑
i=2

P(Ai \Ai−1) = P(A1) + lim
n→∞

n∑
i=2

P(Ai \Ai−1).

Since Ai−1 ⊆ Ai, monotonicity tells us that P(Ai \Ai−1) = P(Ai)− P(Ai−1) and so

P
Å ∞⋃
i=1

Ai

ã
= P(A1) + lim

n→∞

n∑
i=2

(P(Ai)− P(Ai−1)) = lim
n→∞

P(An).

The second assertion follows by taking complements and is left as an exercise.

Exercise 1.1.34. Show the second assertion in Lemma 1.1.33.

The following result, despite its simplicity, is extremely useful in probability theory. It asserts that
the probability that at least one event in a sequence occurs can not exceed the sum of the probabilities
of the events in the sequence.

Lemma 1.1.35 (Union bound). Let (Ω,F ,P) be a probability space and let A1, A2, . . . be a sequence of
events. Then

P
Å ∞⋃
i=1

Ai

ã
≤
∞∑
i=1

P(Ai).

Proof. We show first that, for each n, P(
⋃n
i=1Ai) ≤

∑n
i=1 P(Ai). We proceed by induction on n, the

case n = 1 being trivial. Therefore, suppose that A1, . . . , An+1 ∈ F . We define A = A1 ∪ · · · ∪ An and
B = An+1 \A. Then A1 ∪ · · · ∪An+1 can be written as the disjoint union A ∪B. But then

P(A1 ∪ · · · ∪An+1) = P(A) + P(B) ≤
n∑
i=1

P(Ai) + P(B) ≤
n∑
i=1

P(Ai) + P(An+1) =

n+1∑
i=1

P(Ai),
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where the first equality follows from finite additivity, the first inequality follows from the induction
hypothesis and the last inequality follows from monotonicity.

We now show that P(
⋃∞
i=1Ai) ≤

∑∞
i=1 P(Ai). Define Cn = A1 ∪ · · · ∪ An, for each n ∈ N. Clearly,

C1 ⊆ C2 ⊆ · · · is an increasing sequence of events and so, by continuity of probability,

lim
i→∞

P(Ci) = P(
∞⋃
i=1

Ci) = P(
∞⋃
i=1

Ai).

On the other hand, by the previous paragraph,

P(Cj) = P(A1 ∪ · · · ∪Aj) ≤
j∑
i=1

P(Ai) ≤
∞∑
i=1

P(Ai),

where in the last inequality we use the 1st axiom of probability. Since P(Cj) ≤
∑∞

i=1 P(Ai) for each j ∈ N,
we have that limi→∞ P(Ci) ≤

∑∞
i=1 P(Ai) (using a well-known property of the limit of a sequence) and

so, P(
⋃∞
i=1Ai) ≤

∑∞
i=1 P(Ai).

Exercise 1.1.36. Let (Ω,F ,P) be a probability space and let A1, A2, . . . be a countable family of events.
Show that if P(Ai) = 1, for each i, then P(

⋂∞
i=1Ai) = 1. Similarly, show that if P(Ai) = 0, for each i, then

P(
⋃∞
i=1Ai) = 0.

As mentioned, the union bound is a simple and yet extremely useful tool in probability. We now see
it in action in the so-called probabilistic method.

Example 1.1.37. Our motivating question is the following: Will an arbitrary group of 6 members of a
social network necessarily contain a subgroup of 3 mutual friends or a subgroup of 3 mutual strangers?
Perhaps surprisingly, the answer is “Yes”. A group of 5 individuals, however, does not necessarily have
this property. We can model and generalize this problem via a graph, an ubiquitous object in computer
science and operations research. So what is a graph? Informally speaking (which is enough for us), a
graph is a set of points, called vertices, connected by lines, called edges. The complete graph Kn is the
graph on n vertices such that any two vertices are connected by an edge. A two-coloring of the edges of
Kn is an assignment of colors to its edges so that each edge is colored either red or blue.

Figure 1.2: A two-coloring of K6.

We can encode the fact of being friends by a red line and the fact of being strangers by a blue line.
Therefore, generalizing our motivating question, we might ask: Does Kn always contain a monochro-
matic Kk i.e., a red Kk or a blue Kk, for any two-coloring? Frank Ramsey answered this question in his
celebrated theorem:
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Theorem 1.1.38 (Ramsey’s theorem). For any k ≥ 2, there is a finite value of n for which any two-
coloring of Kn contains a monochromatic Kk and so there is a smallest such value n, called the Ramsey
number R(k, k).

We have remarked that R(3, 3) = 6. This is in fact not difficult to show (try!) but as soon as the value
of k increases, determining R(k, k) has proved to be an extremely difficult problem. At the moment, we
do not even know R(5, 5); we just know that it is between 43 and 48.

But can we say anything about how quickly Ramsey numbers grow with k? In a seminal paper from
1947 that gave birth to what is now called the probabilistic method, Erdős showed how a lower bound
for R(k, k) may be obtained almost effortlessly using a probabilistic argument.

Roughly speaking, the probabilistic method works as follows: Trying to prove that a structure with
a certain desired property exists, one defines an appropriate probability space of structures and then
shows that the desired property holds in this space with positive probability.

Consider a random two-coloring of Kn. The sample space is the set of all possible two-colorings of
Kn. How many such colorings are there? Well, each edge can be colored either red or blue and since
there are

(n
2

)
edges, we have 2(n2) possible colorings, where in random we assume that each has equal

probability 2−(n2).
Let S be any fixed set of k vertices in Kn and let AS be the event that S forms a monochromatic Kk.

Then AS is the union of the disjoint events {Kk is red} and {Kk is blue} and so

P(AS) = 21−(k2).

Let’s now look at the event
⋃
S: |S|=k AS that there is at least one monochromaticKk. We can estimate

its probability by the union bound:

P
Å ⋃
S: |S|=k

AS

ã
≤

∑
S: |S|=k

P(AS) =

Ç
n

k

å
21−(k2).

Therefore, if r(k) denotes the largest integer n satisfying
(n
k

)
21−(k2) < 1, then

P
Å ⋃
S: |S|=k

AS

ã
< 1

and so there must be some two-coloring of Kr(k) without any monochromatic Kk i.e., R(k, k) > r(k).
One could in fact find an estimate for r(k).

Given a sequence A1, A2, . . . ∈ F of events, we are often interested in the event that infinitely many
of them occur, or in its complement that only finitely many of them occur. The Borel-Cantelli lemmas
(Lemma 1.1.39 and its partial converse Lemma 1.3.9 that we will address later) are examples of so-called
0-1 laws in probability: they assert that, under some mild conditions, the two events we are interested
in have probabilities either 0 or 1. We will be using them many times.

We first need some notation. Given our sequence A1, A2, . . . ∈ F of events, for each m, we let
Bm =

⋃
n≥mAn be the union of the events from them-th on. Clearly, B1, B2, . . . is a decreasing sequence

and we define
lim sup

n
An =

⋂
m≥1

Bm =
⋂
m≥1

⋃
n≥m

An.

Similarly, lim infnAn is defined as follows. We first build the increasing sequence C1, C2, . . . , where
Cm =

⋂
n≥mAn and define

lim inf
n

An =
⋃
m≥1

Cm =
⋃
m≥1

⋂
n≥m

An.
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These two notions are related by De Morgan’s laws: Indeed,

(lim sup
n

An)c =
( ⋂
m≥1

⋃
n≥m

An

)c
=
⋃
m≥1

( ⋃
n≥m

An

)c
=
⋃
m≥1

( ⋂
n≥m

Acn

)
= lim inf

n
Acn. (1.1)

Observe that lim infnAn and lim supnAn are events. But which events? Well, an outcome ω ∈ Ω lies
in lim supnAn iff it lies in each of the sets Bm. But then ω lies in infinitely many An’s, or else there exists
an index M such that ω /∈ An for each n ≥ M , a contradiction. Therefore, lim supnAn is nothing but
the event “infinitely many of the An’s occur” (“An i.o.” for short, where i.o. stands for infinitely often).
On the other hand, an outcome ω ∈ Ω lies in lim infnAn iff there exists an m such that ω ∈ An for each
n ≥ m i.e., ω lies in all but finitely many An’s. Therefore, lim infnAn is nothing but the event “all but
finitely many of the An’s occur” (“An a.a.” for short, where a.a. stands for almost always).

The first Borel-Cantelli lemma says that whenever the probabilities of the events An decay fast
enough, it is (almost surely) impossible for the events to occur infinitely often.

Lemma 1.1.39 (First Borel-Cantelli). Let A1, A2, . . . ∈ F be events. If
∑∞

n=1 P(An) converges, then

P(lim sup
n

An) = P({An i.o.}) = 0.

In other words, with probability one only finitely many of the events An occur.

Proof. Let Bm =
⋃
n≥mAn. By the union bound,

P(Bm) = P
( ⋃
n≥m

An

)
≤
∞∑
n=m

P(An).

Since the series
∑∞

n=1 P(An) converges, we have that
∑∞

n=m P(An) tends to 0 as m → ∞ (tails of a
convergent series vanish). But then, since B1, B2, . . . is a decreasing sequence, continuity of probability
implies that

P(lim sup
n

An) = P
Å ⋂
m≥1

Bm

ã
= lim

m→∞
P(Bm) = 0,

as claimed.

Example 1.1.40. Consider an experiment in which a coin is tossed many times. Suppose that the
probability of the event An of obtaining heads at the n-th toss is 1/n2. Then

∑
n P(An) converges and so

the first Borel-Cantelli lemma implies that, almost surely, only finitely many heads will occur.

Exercise 1.1.41. Let A1, A2, . . . ∈ F be events. Show that lim infnAn ⊆ lim supnAn.

1.2 Conditional probability

An experiment is repeated N times. On each trial we observe the occurences or non-occurences of two
events A and B. Suppose we are interested only in the outcomes for which B occurs; all other trials are
disregarded. The proportion of times that A occurs in this smaller collection of trials is N(A ∩B)/N(B)
and

N(A ∩B)

N(B)
=
N(A ∩B)/N

N(B)/N
.

As these ratios can be thought as approximations for the probabilities, the probability that A occurs given
that B occurs should be intuitively P(A ∩B)/P(B).
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Definition 1.2.1. Let (Ω,F ,P) be a probability space and let A,B ∈ F with P(B) > 0. The conditional
probability that A occurs given that B occurs is the value

P(A|B) =
P(A ∩B)

P(B)
.

We stress the fact that this is a definition. The next result justifies the term conditional probability:

Lemma 1.2.2. Let (Ω,F ,P) be a probability space and let F be such that P(F ) > 0. The function P : F →
R defined by P (A) = P(A|F ) is a probability measure.

Lemma 1.2.2 implies that we can apply all the tools developed so far to conditional probabilities. It
is very instructive to prove it:

Exercise 1.2.3. Prove Lemma 1.2.2.

In many situations it is natural to assign values to some conditional probabilities and, from them,
deduce the values of non-conditional probabilities.

Example 1.2.4. A student can’t decide whether to study history or literature. If he takes literature, he
will pass with probability 1/2; if he takes history, he will pass with probability 1/3. He made his decision
based on a coin toss. What is the probability that he opted for history and passed the exam?

As a sample space we take {history, literature}×{pass, fail}. IfA is the event that he passed, thenA =
{history, literature}×{pass}. IfB denotes the event that he opted for history, then {history}×{pass, fail}.
We have

P(B) = P(Bc) =
1

2
, P(A|B) =

1

3
, P(A|Bc) =

1

2

and so P(A ∩ B) = P(A|B)P(B) = 1/6. Notice that making the sample space explicit was in fact not
crucial in this case, as often happens with conditional probabilities.

Definition 1.2.5. Given a countable infinite collection of events B1, B2, . . . , we say that the collection
is a partition of Ω if Bi ∩ Bj = ∅ for each i 6= j and

⋃∞
i=1Bi = Ω. The same definition applies mutatis

mutandis in the case of a finite collection.

Lemma 1.2.6 (Law of total probability). Given a partition B1, B2, . . . of Ω such that P(Bi) > 0 for each
i, then

P(A) =
∞∑
i=1

P(A|Bi)P(Bi).

A similar result holds in case the collection B1, B2, . . . , Bn is finite.

Proof. Exercise!

The law of total probability is typically used as follows. Suppose we want to compute the probability
that A occurs. Let B be another arbitrary event with 0 < P(B) < 1. There are two scenarios: either B or
Bc occurs. If we know the probability of the two scenarios and the probability of A conditioned on each
of them, then we can compute the probability of A.

Lemma 1.2.7 (Bayes’ law). Let A and B be two events such that P(A),P(B) > 0. Then

P(A|B) =
P(B|A)

P(B)
· P(A).
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Proof. Exercise!

Bayes’ law tells how to update the estimate of the probability of A when new evidence restricts the
sample space to B. The ratio P(B|A)/P(B) determines “how compelling the new evidence is”.

Combining Bayes’ law with the law of total probability we obtain that, if B1, B2, . . . is a partition of
Ω such that P(Bi) > 0 for each i, then

P(Bi|A) =
P(A|Bi)P(Bi)

P(A)
=

P(A|Bi)P(Bi)∑∞
i=1 P(A|Bi)P(Bi)

.

Example 1.2.8. Consider a lab screen for a certain virus. A person that carries the virus is screened
positive in only 95% of the cases (5% chance of false negative). A person who does not carry the virus
is screened positive in 1% of the cases (1% chance of false positive). Given that 0.5% of the population
carries the virus, what is the probability that a person who has been screened positive is actually a
carrier?

We take Ω = {carrier, not carrier} × {+,−}. Let A be the event “the person is a carrier” i.e., A =
{carrier}×{+,−}, and letB be the event “the person was screened positive” i.e.,B = {carrier, not carrier}×
{+}. We are given the following information

P(A) = 0.005 P(B|A) = 0.95 P(B|Ac) = 0.01.

Therefore, taking A,Ac as our partition of Ω, we have that

P(A|B) =
P(B|A)P(A)

P(B|A)P(A) + P(B|Ac)P(Ac)
=

0.95 · 0.005

0.95 · 0.005 + 0.01 · 0.995
≈ 1

3
.

Example 1.2.9. A random number N of dice is thrown. Let Ai be the event that N = i and suppose
that P(Ai) = 1/2i (i ≥ 1). The sum of the scores is S. Compute P(N = 2|S = 4).

By Bayes’ law,

P(N = 2|S = 4) =
P(S = 4|N = 2)P(N = 2)

P(S = 4)
.

The (countable) family of events N = 1, N = 2, N = 3, . . . is a partition of Ω such that P(N = i) =
1/2i > 0. Therefore, by the law of total probability,

P(S = 4) =
∞∑
i=1

P(S = 4|N = i)P(N = i).

However, only the first four terms of the sum are non-zero. Indeed, if i ≥ 5, then P(S = 4|N = i) = 0.
Therefore, the desired probability is

P(N = 2|S = 4) =
P(S = 4|N = 2)P(N = 2)

P(S = 4)
=

P(S = 4|N = 2)P(N = 2)∑4
i=1 P(S = 4|N = i)P(N = i)

.

We are then left to compute P(S = 4|N = i), for i ∈ {1, 2, 3, 4}. Let’s consider P(S = 4|N = 3), the
other cases being similar. This is the probability of getting a sum of 4 by throwing 3 dice. As usual, label
the dice 1, 2, 3 and let xi be the number on die i. There are 63 possible outcomes and we need to count
how many triples (x1, x2, x3) are such that x1 + x2 + x3 = 4. Since each xi is at least 1, it is easy to see
there are exactly 3 such triples, namely (1, 1, 2), (1, 2, 1), (2, 1, 1). Therefore, P(S = 4|N = 3) = 3/63.

More generally, we might be interested in the number of positive integer solutions to

x1 + x2 + · · ·+ xr = n

for some fixed r ≤ n. Write n as 1 + 1 + · · · + 1, where there are n 1’s and n − 1 pluses. To decompose
n into r summands we only need to choose r − 1 pluses out of the n − 1 and this can be done in

(n−1
r−1

)
ways. What about if we are looking for positive solutions such that xi ≤ 6 for each i? How can we adapt
the reasoning above?
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Exercise 1.2.10. What is the number of nonnegative integer solutions to x1 + x2 + · · ·+ xm = n?

Exercise 1.2.11. Consider n indistinguishable balls randomly distributed in m boxes. What is the proba-
bility that exactly k boxes remain empty?

Exercise 1.2.12. An urn contains b blue balls and c cyan balls. A ball is drawn at random, its color
noted and it is returned to the urn together with d further balls of the same color. The process is repeated
indefinitely.

• Compute the probability that the second ball drawn is cyan.

• Compute the probability that the first ball drawn is cyan given that the second ball drawn is cyan.

1.3 Independence

In general, the occurence of some event B changes the probability that a certain event A occurs, the
original P(A) being replaced by P(A|B). If the probability remains unchanged i.e., P(A|B) = P(A), then
we call A and B independent. Since in order to talk about P(A|B) we need P(B) > 0, we give the
following more general definition which agrees with this special case.

Definition 1.3.1. The events A and B are independent if P(A ∩ B) = P(A)P(B). More generally, a
family of events {Ai : i ∈ I} is independent if P(

⋂
i∈J Ai) =

∏
i∈J P(Ai) for each finite subset J of I. A

family {Ai : i ∈ I} is pairwise independent if P(Ai ∩Aj) = P(Ai)P(Aj) for each i 6= j.

If the occurrence of two events is governed by distinct and noninteracting processes, such events will
turn out to be independent (this will be our modelling assumption).

Independence is not easily visualized in terms of the sample space. A common first thought is that
two events are independent if they are disjoint, but in fact the opposite is true: two disjoint events A
and B with P(A) > 0 and P(B) > 0 are never independent as P(A ∩B) = 0 6= P(A)P(B).

Example 1.3.2. Roll two dice and let A be the event “the first die is 4”. Let B1 be the event “the second
die is 2”. This satisfies our intuitive notion of independence since the outcome of the first dice roll has
nothing to do with that of the second. To check independence, note that P(B1) = 1/6 = P(A) and
P(A ∩B1) = 1/36.

Let B2 be the event “the sum of the two dice is 3”. Since A ∩B2 = ∅, we have that P(A ∩B2) = 0 <
P(A)P(B2) and so the events cannot be independent.

Let B3 be the event “the sum of the two dice is 7”. This time, A and B3 are independent. Indeed, we
have that P(B3) = 6/36 and P(A ∩B3) = 1/36.

Let B4 be the event “the sum of the two dice is 9”. We have that A and B4 are not independent.
Indeed, P(A ∩B4) = 1/36 but P(A)P(B4) = 1/6 · 4/36.

Remark 1.3.3. Independence is stronger than pairwise independence: Any independent family is clearly
pairwise independent but the converse is not true. Indeed, toss two coins and consider the events “first
coin gives H”, “second coin gives H”, “resulting number of heads is odd”. They form a family which is
pairwise independent but not independent.

Example 1.3.4 (Bernoulli trials). If an experiment involves a sequence of independent but identical
stages, we say that we have a sequence of independent trials. If there are only two possible results at
each stage, we say that we have a sequence of independent Bernoulli trials.

Consider an experiment that consists of n independent tosses of a biased coin, in which the proba-
bility of H is p, for some p ∈ [0, 1]. What is the probability of getting exactly k heads?
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Let Ai be the event “the i-th toss is H”. Independence means that the events A1, A2, . . . , An are inde-
pendent (the occurrence of any of them is governed by distinct and noninteracting processes). Consider
for example the outcome in which we have k heads followed by n − k tails i.e., the elementary event
A1 ∩A2 ∩ · · · ∩Ak ∩Ack+1 ∩ · · · ∩Acn. Intuitively, the family A1, A2, . . . , Ak, A

c
k+1, . . . , A

c
n is independent

(see below for a formal proof) and so we have that

P(A1 ∩A2 ∩ · · · ∩Ak ∩Ack+1 ∩ · · · ∩Acn) = P(A1)P(A2) · · ·P(Ak)P(Ack+1) · · ·P(Acn) = pk(1− p)n−k.

Moreover, any other elementary event consisting of k heads and n−k tails will have the same probability.
Therefore, by additivity, it is enough to count such elementary events. This is equivalent to counting the
number of subsets of size k (the trials giving head) of a set of size n (the set of all trials). This number
is
(n
k

)
and so the probability of getting exactly k heads isÇ

n

k

å
pk(1− p)n−k.

As mentioned above, we now show that if A1, A2 . . . , An is an independent family then, replac-
ing Ai by Aci for some i, still gives an independent family. By possibly repeating the argument, it is
enough to show this for one value of i, say i = n. Therefore, we show the following: if A1, A2 . . . , An
is an independent family, then A1, A2 . . . , An−1, A

c
n is an independent family. Consider a subset J of

A1, A2 . . . , An−1, A
c
n. If Acn /∈ J , then P(

⋂
A∈J A) =

∏
A∈J P(A) by assumption. If Acn ∈ J then, by possi-

bly relabelling indices we have that J is of the form J = {A1, . . . , A`, A
c
n} for some ` ∈ {1, . . . , n − 1}.

Letting B = A1 ∩ · · · ∩A`, we have that

P(A1 ∩ · · · ∩A` ∩Acn) = P(B ∩Acn)

= P(B \ (B ∩An))

= P(B)− P(B ∩An)

= P(B)− P(A1 ∩ · · · ∩A` ∩An)

= P(B)− P(A1) · · ·P(A`)P(An)

= P(B)− P(B)P(An)

= P(B)(1− P(An))

= P(B)P(Acn)

= P(A1) · · ·P(A`)P(Acn),

which is what we wanted to show.

Exercise 1.3.5. Suppose A and B are events and the probability of B is either zero or one. Show that A
and B are independent.

Example 1.3.6 (Gambler’s ruin). A man wants to buy a car at a cost of N units of money. He starts
with k units, for some 0 < k < N and tries to win the remainder by the following gamble with his bank
manager. He tosses a fair coin repeatedly and independently. If H comes up, then the manager pays him
one unit. If T comes up, then he pays the manager one unit. He plays the game until one of two events
occurs: either he runs out of money and is bankrupted or he wins enough to buy the car. What is the
probability that he is ultimately bankrupted?

We want to compute the probability of the event Ak “bankrupted if starting with k units”. Notice that
P(A0) = 1 and P(AN ) = 0. Let B be the event “first toss is H”. The law of total probability tells us that

P(Ak) = P(Ak|B)P(B) + P(Ak|Bc)P(Bc).
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But if the first toss is H, he has k+1 units and if the first toss is T , he has k−1 units. Since the tosses are
independent, we have that P(Ak|B) = P(Ak+1) and P(Ak|Bc) = P(Ak−1). Therefore, letting pk = P(Ak),
we have that

pk =
1

2
(pk+1 + pk−1), (1.2)

with p0 = 1 and pN = 0. We want to compute the value of pk by using this recurrence relation together
with the two “boundary conditions”. Observe first that, by Equation (1.2), the difference between con-
secutive pk ’s is always the same: pk − pk−1 = pk+1 − pk. Letting bk = pk − pk−1 this common value, we
have that bk = b1 and so

pk = b1 + pk−1 = b1 + (b1 + pk−2) = · · · = kb1 + p0.

Substituting N for k, we get 0 = pN = Nb1 +p0 = Nb1 +1, from which b1 = −1/N and so pk = 1−k/N .
Notice that, for each fixed k, the probability pk he is bankrupted starting with k units tends to 1 as

N →∞.

Exercise 1.3.7. In this exercise we consider gambler’s ruin in the case the coin has probability p of getting
heads and probability q of getting tails, where p+ q = 1 and p 6= 1/2. Using the previous notation, proceed
as follows (each step is deduced from the previous):

• Show that pk = p · pk+1 + q · pk−1;

• Deduce that
pk+1 − pk =

q

p
· (pk − pk−1);

• Deduce that

bk =

Å
q

p

ãk−1

· b1;

• Conclude that

pk = 1−
1−

( q
p

)k
1−

( q
p

)N .
Remark 1.3.8. Let’s make a comment about the previous exercise in the realistic situation that our
gambler plays against a gambling machine. Gambling machines in most countries permit by law a
certain degree of “unfairness” by taking p < 1/2. This allows the house to make an income. Suppose
that p = 0.47 and that the gambler starts with 10 units and aims at reaching 20 units. The probability
he is bankrupted turns out to be roughly 77% (check it yourself!). Therefore, a “slightly unfair” game at
each round can become devastatingly unfair in the long run.

We now state and prove the following partial converse to the first Borel-Cantelli lemma. It asserts
that if the probabilities of the events An do not decay fast and if the events are in addition independent,
then they must (almost surely) occur infinitely often.

Lemma 1.3.9 (Second Borel-Cantelli). Let A1, A2, . . . ∈ F be events. If
∑∞

n=1 P(An) diverges and the
events are independent, then

P(lim sup
n

An) = P({An i.o.}) = 1.

In other words, the events An occur infinitely often with probability one.
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Proof. We have seen in Equation (1.1) that (lim supnAn)c = lim infnA
c
n. Therefore, lim supnAn =

(lim infnA
c
n)c. Let now Cm =

⋂
n≥mA

c
n so that C1, C2, . . . is an increasing sequence and, by defini-

tion, lim infnA
c
n =

⋃
m≥1Cm. Continuity of probability implies that P(lim infnA

c
n) = limm→∞ P(Cm).

Combining these, we obtain

P(lim sup
n

An) = 1− P(lim inf
n

Acn) = 1− lim
m→∞

P(
⋂
n≥m

Acn). (1.3)

To use independence, we need finite intersections: P(
⋂`
n=mA

c
n) =

∏`
n=m P(Acn). But notice that,⋂m

n=mA
c
n,
⋂m+1
n=mA

c
n,
⋂m+2
n=mA

c
n, . . . is a decreasing sequence and so, by continuity of probability,

P(
⋂
n≥m

Acn) = lim
`→∞

P(
⋂̀
n=m

Acn) = lim
`→∞

∏̀
n=m

P(Acn) = lim
`→∞

∏̀
n=m

(1− P(An)). (1.4)

We now use the inequality 1− p ≤ e−p (Exercise 1.3.11) to estimate the last product:

∏̀
n=m

(1− P(An)) ≤
∏̀
n=m

e−P(An) = exp(−
∑̀
n=m

P(An)).

But by assumption,
∑∞

n=1 P(An) diverges and so exp(−
∑`

n=m P(An))→ 0 as `→∞. By Equation (1.4),
we obtain P(

⋂
n≥mA

c
n) = 0 and plugging into Equation (1.3), P(lim supnAn) = 1, as desired.

Observation 1.3.10. Notice that, if we drop the independence assumption in Lemma 1.3.9, the statement
fails to hold. Indeed, let A be an arbitrary event with 0 < P(A) < 1 and let An = A for each n ≥ 1. Clearly,
the family A1, A2, . . . is not independent. We have that

∑∞
n=1 P(An) diverges but P({An i.o.}) = P(A) < 1.

We can combine the first and second Borel-Cantelli lemma in order to highlight the 0-1 property of
the event {An i.o.}:

Let A1, A2, . . . ∈ F be a family of independent events. Then

P({An i.o.}) =


0 if

∞∑
n=1

P(An) converges;

1 if
∞∑
n=1

P(An) diverges.

Exercise 1.3.11. Show that 1 + x ≤ ex, for each x ∈ R.

Example 1.3.12. Consider a sequence of independent tosses of a fair coin. What is the probability that
there are infinitely many heads? Let An be the event that the n-th toss is heads. Then P(An) = 1/2
for each n and so

∑
n P(An) diverges. Since the An’s are independent, the second Borel-Cantelli lemma

then implies that the desired probability is 1.

Example 1.3.13. Consider again a sequence of independent tosses of a fair coin. What is the probability
that a run of 10001000 heads occurs? Let An be the event that a run of 10001000 heads occur starting from
the n-th toss. We have that P(An) = 1

210001000
. Moreover, the family A1, A1+10001000 , A1+2·10001000 , . . . is

independent. Since
∑

n P(An) diverges, the second Borel-Cantelli lemma implies that the probability
that infinitely many of the An’s occur is 1 and so the desired probability is 1.
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Example 1.3.14. Similarly to the previous, a monkey hitting keys at random on a keyboard for an
infinite amount of time will almost surely i.e., with probability one, type the seven volumes of Proust’s
In search of lost time.

Exercise 1.3.15. Consider a sequence of rolling of a fair die. What is the probability that a run containing
the numbers 1, 6, 5, 4 occurs infinitely often?

Exercise 1.3.16. We perform infinitely many independent experiments. The n-th one is successful with
probability n−α and fails with probability 1− n−α, for some 0 < α < 1. What is the probability that we see
k consecutive successes infinitely often? Hint: The answer depends on k.

1.4 Random variables

Most of the times we are not interested in an experiment itself but rather in some consequence of its
random outcome. A random variable can be thought of as a numerical “summary” of a certain aspect
of the experiment. It is nothing but a function from the sample space Ω to the real line R, where the
“random” in the name comes from the experiment:

1. Chance determines the random outcome ω ∈ Ω;

2. The outcome ω determines a certain quantity of interest.

In other words, a random variable X represents an unknown quantity that varies with the outcome
of a random event. Before the random event, we know which values X could possibly assume, but
we do not know which one it will take until the random event happens. The terminology may appear
confusing: a variable is a function? This is because the words “random variable” were in use long before
the connection between probability and analysis was discovered.

Example 1.4.1. A fair coin is tossed twice. We can take Ω = {HH,HT, TH, TT}. For any outcome ω ∈
Ω, we let X(ω) be the number of heads in the outcome. Therefore, X(HH) = 2, X(HT ) = X(TH) = 1
and X(TT ) = 0.

Crucially, the function X : Ω → R has to be sufficiently well-behaved so that we can talk about
probabilities with which X assumes certain values:

Definition 1.4.2. A random variable is a function X : Ω → R such that {ω ∈ Ω : X(ω) ≤ x} ∈ F for
each x ∈ R.

Remark 1.4.3. Notice that whenever we talk about a random variable we implicitly assume an underly-
ing probability space (Ω,F ,P).

Example 1.4.4. Let (Ω,F ,P) be a probability space where F is the power set of Ω. Then obviously any
function X : Ω→ R is a random variable. Recall that if Ω is countable, we can always take its power set
as our σ-field F .

In general, the numerical value of a random variable is more likely to lie in certain subsets of R,
depending on the probability space (Ω,F ,P) and the function X itself. The following notion describes
the distribution of the likelihoods of possible values of X. As mentioned above, it is the reason behind
the technical requirement {ω ∈ Ω : X(ω) ≤ x} ∈ F in the definition of random variable.
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R
x

Ω ∈ F X

X−1

Figure 1.3: Visualization of a random variable X and the property {ω ∈ Ω : X(ω) ≤ x} ∈ F .

Definition 1.4.5. The distribution function of a random variable X is the function FX : R → [0, 1]
given by FX(x) = P(X ≤ x). Here and in the following we use the shorthands X ≤ x or {X ≤ x} for
the event {ω ∈ Ω : X(ω) ≤ x}. We will also drop the subscript X in FX when it is clear to which random
variable we are referring.

Example 1.4.6. The distribution function of the random variable in Example 1.4.1 is given by:

F (x) = P(X ≤ x) =


0 if x < 0;

1/4 if 0 ≤ x < 1;

3/4 if 1 ≤ x < 2;

1 if x ≥ 2.

We are interested in two types of random variables:

Definition 1.4.7. The random variable X is discrete if it takes values in some countable subset of R.
The probability mass function (pmf) of a discrete random variable X is the function fX : R → [0, 1]
given by fX(x) = P(X = x).

The random variable X is continuous if its distribution function can be expressed as

FX(x) = P(X ≤ x) =

∫ x

−∞
fX(u) du

for some integrable function fX : R→ [0,∞) called the probability density function (pdf) of X.

The name continuous comes from the fact (a generalization of the Fundamental theorem of calcu-
lus) that the function FX is continuous. This is in sharp contrast to discrete random variables, whose
distribution functions are never continuous (only right-continuous as we will see shortly).

Remark 1.4.8. The definition of random variable requires that {X ≤ x} ∈ F for each x ∈ R. But what
about {X = x}? It turns out that, since {x} is a Borel set (Example 1.1.16), Theorem 1.4.28 will indeed
imply that {X = x} ∈ F for each x ∈ R and so it makes sense to write P(X = x).

Remark 1.4.9. If the distribution function FX : R → [0, 1] of a continuous random variable X is differ-
entiable at some x ∈ R, the corresponding value fX(x) can be found by taking the derivative of FX at
x.

Remark 1.4.10. Observe that, knowing the probability mass function of a discrete random variable, we
can immediately compute its distribution function using countable additivity. Indeed,

{X ≤ x} =
⋃

k: k≤x and k∈Im(X)

{X = k},
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where the union is countable as Im(X) is countable (here Im(X) denotes the image of X i.e., the values
taken by X).

Example 1.4.11 (Uniform random variable). The random variable X is uniform on [a, b] if it has dis-
tribution function

F (x) = P(X ≤ x) =


0 if x < a;
x− a
b− a

if a ≤ x ≤ b;

1 if x > b.

X is continuous, as it admits density function given by

f(x) =


1

b− a
if a ≤ x ≤ b;

0 otherwise.

The idea here is that we are picking a value “at random” from [a, b] (values outside the interval are
impossible, and all those inside have the same probability density). Therefore, the probability that
X ≤ c for some c ∈ [a, b] should intuitively be c−a

b−a .

1 20 a b

1 1

Figure 1.4: Distribution function of the discrete random variable in Example 1.4.1 (left) and of the uniform random variable
on [a, b] (right).

In the following we list several important discrete random variables.

Example 1.4.12 (Constant random variable). Let c ∈ R and let X : Ω → R be given by X(ω) = c for
each ω ∈ Ω. This is a random variable with pmf

fX(x) = P(X = x) =

®
0 if x 6= c;

1 if x = c.

and distribution function

FX(x) = P(X ≤ x) =

®
0 if x < c;

1 if x ≥ c.

Example 1.4.13 (Bernoulli random variable). A coin is tossed once and let p be the probability of H.
Let X be 1 if the toss gives H and 0 otherwise. This is a random variable with pmf

fX(x) = P(X = x) =


1− p if x = 0;

p if x = 1;

0 otherwise.
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and distribution function

FX(x) = P(X ≤ x) =


0 if x < 0;

1− p if 0 ≤ x < 1;

1 if x ≥ 1.

Example 1.4.14 (Binomial random variable). A coin is tossed n times. At each toss, the coin gives H
with probability p, independently of prior tosses. Let X be the number of heads in the n-toss sequence.
We refer to X as a binomial random variable with parameters (n, p). We essentially already computed
its pmf (see Example 1.3.4). It is given by

fX(k) = P(X = k) =

Ç
n

k

å
pk(1− p)n−k,

for k ∈ {0, 1, . . . , n}.

Example 1.4.15 (Geometric random variable). Suppose that we repeatedly and independently toss a
coin with probability of getting H being p. The geometric random variable is the number X of tosses
needed for a head to come up for the first time. Its pmf is given by

fX(k) = P(X = k) = (1− p)k−1p,

for k = 1, 2, . . .

Example 1.4.16 (Poisson random variable). A random variable X is said to be Poisson if it has pmf
given by

fX(k) = P(X = k) = e−λ
λk

k!
,

for some parameter λ > 0 and k = 0, 1, 2, . . . .
How does a Poisson random variable with parameter λ arise? It turns out that it is a limit of binomial

random variables with parameters (n, λ/n). Indeed,Ç
n

k

åÅ
λ

n

ãkÅ
1− λ

n

ãn−k
=
λk

k!

n(n− 1) · · · (n− k + 1)

nk

Å
1− λ

n

ãn−k
=
λk

k!

Å
1− 1

n

ã
· · ·
Å

1− k − 1

n

ã(
1− λ

n

)n(
1− λ

n

)k
and for any fixed k, taking the limit n → ∞, we have that the quantity above tends to e−λ λ

k

k! . In other
words, a Poisson random variable with parameter λ approximates a binomial random variable with
parameters (n, p) provided λ = np, n is large and p is small. It appears abundantly in life, for example,
when counting the number of radio-active decays in a unit of time or the number of cars involved in
accidents in a city on a given day.

Exercise 1.4.17. An airplane engine breaks down during a flight with probability 1−p. An airplane lands
safely only if at least half of its engines are functioning upon landing. What is preferable: a two-engine
airplane or a four-engine airplane?

Exercise 1.4.18. There are n white balls and m black balls in an urn. Each time, we take out one ball
(with replacement) until we have a black ball. What is the probability that we need at least k trials?
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One might worry that the condition in the definition of a random variable is too stringent. Luckily,
this is not the case: almost all reasonable functions turn out to be random variables. We now provide
several ways of construting new random variables.

Since real numbers have addition and multiplication, we can perform such operations on real-valued
functions pointwise. If f1, f2 : Ω → R are two functions, then the pointwise sum f1 + f2 : Ω → R is
defined by (f1 + f2)(ω) = f1(ω) + f2(ω) for each ω ∈ Ω. We define the pointwise product f1f2 and the
pointwise scalar λf1 similarly.

Proposition 1.4.19. Let X and Y be random variables and let λ ∈ R. The following are random variables:

(a) λX;

(b) X + Y ;

(c) XY ;

(d) Z(ω) =

®
Y (ω)/X(ω) if X(ω) 6= 0;
0 if X(ω) = 0.

(e) max{X,Y };

(f) min{X,Y }.

Proof. We prove only (b) as the other proofs are similar. We need to show that {ω : X(ω) + Y (ω) ≤
x} ∈ F for each x ∈ R. Since σ-fields are closed under complementation, it is then enough to show that
{ω : X(ω) + Y (ω) > x} ∈ F for each x ∈ R. Observe that, since there exists a rational number between
any two real numbers, we have

{ω : X(ω) + Y (ω) > x} =
⋃
r∈Q
{ω : X(ω) > r, Y (ω) > x− r}.

But for fixed r and x, {ω : X(ω) > r} ∈ F and {ω : Y (ω) > x−r} ∈ F , asX and Y are random variables.
Therefore their intersection {ω : X(ω) > r, Y (ω) > x − r} belongs to F and hence the countable union⋃
r∈Q{ω : X(ω) > r, Y (ω) > x− r} belongs to F as well.

Example 1.4.20. A binomial random variable with parameters (n, p) is a sum of n Bernoulli random
variables each with parameter p.

Exercise 1.4.21. Show that if X and Y are random variables, then max{X,Y } and min{X,Y } are.

But we can also compose functions. Given a random variable X : Ω → R, and a function g : R → R,
we can consider Y = g(X) i.e., the function Y : Ω→ R mapping ω ∈ Ω to g(X(ω)) ∈ R. It turns out that
if g is continuous, we obtain another random variable:

Theorem 1.4.22. Let X be a random variable and g : R→ R a continuous function. Then Y = g(X) is a
random variable.

Example 1.4.23. For a random variableX, all the following are random variables: sin(X), eX , log(X), Xn.

We now observe some properties that the distribution function of a generic random variable satisfies.
Hence the following result holds for both discrete and continuous random variables.

Lemma 1.4.24. The distribution function F of a random variable X satisfies the following properties:
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(a) It is monotonically increasing i.e., if x ≤ y, then F (x) ≤ F (y).

(b) limx→−∞ F (x) = 0 and limx→∞ F (x) = 1.

(c) It is right-continuous i.e., F (x+ h)→ F (x) as h tends to 0 from the positive side.

Proof. (a) If x ≤ y, then {ω : X(ω) ≤ x} ⊆ {ω : X(ω) ≤ y)} and so

F (x) = P({ω : X(ω) ≤ x}) ≤ P({ω : X(ω) ≤ y}) = F (y)

by monotonicity of probability. Notice that this also implies that the limits in (b) exist, as 0 ≤ F (x) ≤ 1
is bounded.

(b) Consider events of the form B−n = {ω : X(ω) ≤ −n}, for n ∈ N. We have that B−1 ⊇ B−2 ⊇ · · ·
and

⋂∞
n=1B−n = ∅. Therefore, by continuity of probability, F (−n) = P(B−n) → P(∅) = 0 as n → ∞.

The conclusion follows (why?). The other limit is left as an exercise.
(c) We use the analysis fact that a function f : R → R is right-continuous iff for each real sequence

{yn} converging to x from the right (i.e. {yn} converges to x and yn ≥ x for each n), we have that
{f(yn)} converges to f(x). Therefore, let {yn} be such a sequence. Borrowing notation from the previous
point, we have that

⋂
nByn = Bx and so, again by continuity of probability, F (yn) = P(Byn)→ P(Bx) =

F (x) as n→∞.

Exercise 1.4.25. Fill the gaps in the proof of Lemma 1.4.24.

A remarkable and reassuring fact is that the three properties in Lemma 1.4.24 in fact characterize
distribution functions of random variables:

Theorem 1.4.26. Let F : R → R be a function satisfying (a), (b) and (c) in Lemma 1.4.24. Then there
exists a random variable X with distribution function F .

The result above tells us that instead of directly providing a random variable, we can simply provide
a function F : R→ R satisfying (a), (b) and (c) in Lemma 1.4.24. Notice that it justifies the existence of
the uniform random variable on [a, b] (which was defined by providing its distribution function).

Exercise 1.4.27. Determine whether the following functions F : R → R are distribution functions of a
random variable:

• F (x) = x2

1+x2
;

• F (x) = 1
π (arctan(x) + π

2 ).

It turns out that, for a random variable X, not only it makes sense to compute P(X ≤ x), which is
the same as P(X ∈ (−∞, x]), but also P(X ∈ A) for all Borel sets A ⊆ R. We first need to check that
indeed {X ∈ A} is an event whenever A is a Borel set. Recall that, in particular, every open set in R is a
Borel set and the family B of Borel sets is extremely rich.

Theorem 1.4.28. Let X be a random variable and let A ∈ B be a Borel set in R. Then {X ∈ A} ∈ F i.e.,
{X ∈ A} is an event.

Proof. We proceed as follows. We let G be the family of all A ⊆ R such that {X ∈ A} ∈ F and show
that G is a σ-field on R containing all open intervals in R. Since we know B is generated by the open
intervals (Proposition 1.1.14) and hence is the smallest σ-field on R containing the open intervals, we
obtain that B ⊆ G, as desired.
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Since {a < X < b} ∈ F for each real numbers a < b (why?), G contains all open intervals. It remains
to check that G is indeed a σ-field on R. Clearly, R ∈ G, as {ω : X(ω) ∈ R} = Ω ∈ F . Let now A ∈ G.
Then {X ∈ A} ∈ F and so {X ∈ Ac} = {X ∈ A}c ∈ F as F is closed under complementation. Suppose
finally that A1, A2, . . . ∈ G. Then {X ∈

⋃
nAn} =

⋃
n{X ∈ An} ∈ F as F is closed under countable

unions.

It is now easy to compute the probabilities of the events {X > x} and {x ≤ X ≤ y} knowing the
distribution function of X:

Lemma 1.4.29. Let F be the distribution function of the random variable X. Then

(a) P(X > x) = 1− F (x);

(b) P(x < X ≤ y) = F (y)− F (x).

Proof. (a) Since {X > x} = Ω \ {X ≤ x}, we have that

P(X > x) = 1− P(X ≤ x) = 1− F (x).

(b) Ω can be written as the disjoint union {X ≤ x} ∪ {x < X ≤ y} ∪ {X > y}. Therefore, by finite
additivity and (a),

1 = F (x) + P(x < X ≤ y) + (1− F (y)),

as claimed.

We somehow convinced ourselves that in the case of a discrete random variable, the probability mass
function is more informative than the distribution function (see Remark 1.4.10). As the following result
shows, the probability mass function indeed captures all the information in the probability space that
is relevant to X: we can compute the probability of every event defined just in terms of X by simply
knowing the pmf of X.

Lemma 1.4.30. Let X be a discrete random variable with pmf fX and let A ⊆ R be a Borel set. Then

(a) The set {x ∈ R : fX(x) 6= 0} is countable.

(b) P(X ∈ A) =
∑

x∈A fX(x).

Proof. (a) It follows from the fact that X takes countably many values.
(b) The event {X ∈ A} can be written as the disjoint union

⋃
x∈A{X = x}. Since the image of X is

countable, at most countably many events of the form {X = x} are not the empty set and so

{X ∈ A} =
⋃

x∈A∩Im(X)

{X = x}

is a countable union. But then countable additivity implies that

P(X ∈ A) =
∑

x∈A∩Im(X)

P(X = x) =
∑
x∈A

P(X = x) =
∑
x∈A

f(x),

as claimed.
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Notice that, in view of (a), the sum in (b) is understood to be a countable sum (it contains only
countably many non-zero terms). From (b) and by the second probability axiom, we have that

1 = P(X ∈ R) =
∑
x

fX(x).

For example, in the case of a binomial random variable X, we have

1 =
n∑
k=0

Ç
n

k

å
pk(1− p)n−k,

in agreement with the Binomial Theorem

(x+ y)n =

n∑
k=0

Ç
n

k

å
xkyn−k.

Remark 1.4.31. It follows from the definition that the probability mass function fX : R → [0, 1] of a
discrete random variable X satisfies:

• fX(x) ≥ 0 for each x ∈ R;

•
∑

x fX(x) = 1, where we stress again that this is a countable sum over the non-zero values of fX .

It is easy to see that if a function f satisfies the two properties above, then it is a probability mass function
for a discrete random variable.

Exercise 1.4.32. Determine whether the following functions f : N → [0, 1] are probability mass functions
of a discrete random variable:

• f(x) = 1
x(x+1) ;

• f(x) = 4
x(x+1)(x+2) .

The analogue of Lemma 1.4.30 and its consequences in the case of continuous random variables are
given by the following.

Lemma 1.4.33. If X is a continuous random variable with density function f(x), then

(1) P(x < X ≤ y) =
∫ y
x f(u).

(2) P(X = x) = 0, for each x ∈ R.

(3) P(x < X ≤ y) = P(x ≤ X ≤ y) = P(x < X < y) = P(x ≤ X < y).

(4)
∫∞
−∞ f(u) = 1.

Loosely speaking, the reason behind (2) is that there are uncountably many possible values for X
and this number is so large that the probability of X taking any particular value is 0.

Proof. (1) By Lemma 1.4.29, definition of density function and additivity of integration, we have

P(x < X ≤ y) = F (y)− F (x) =

∫ y

−∞
f(u)−

∫ x

−∞
f(u) =

∫ y

x
f(u).
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(2) For each n ∈ N, we have that {X = x} ⊆ {x − 1/n < X ≤ x}. Therefore, monotonicity and (1)
imply that

P(X = x) ≤ P
Å
x− 1

n
< X ≤ x

ã
=

∫ x

x− 1
n

f(u).

But
∫ x
x− 1

n
f(u) tends to 0 as n→∞.

(3) By finite additivity and (2),

P(x ≤ X ≤ y) = P(x < X ≤ y) + P(X = x) = P(x < X ≤ y).

The other equalities are proved similarly.
(4) By Lemma 1.4.24, limx→∞ F (x) = 1 and so

∫∞
−∞ f(u) = limx→∞ F (x) = 1.

Remark 1.4.34. It would be tempting to extend (b) in Lemma 1.4.30 to the continuous case and write
P(X ∈ A) =

∫
A f(u) for any Borel set A. The problem is that the expression doesn’t make sense if we

consider the Riemann integral (the integral you are familiar with), unless A is an interval. But Borel
sets are much more rich than intervals! This is where one would replace the notion of Riemann integral
with the more general notion of Lebesgue integral. Unfortunately, we have to content ourselves with
Riemann integrals.

Exercise 1.4.35. Let X be a random variable with distribution function

F (x) =


0 if x < 0;

x2 if 0 ≤ x ≤ 1;
1 if x > 1.

Is X discrete or continuous? Compute P(1/4 < X < 5), P(0.2 < X < 0.8) and P(X = 1/2).

1.5 Expectation of discrete random variables

Suppose we have an experiment and a discrete random variable X arising from the experiment. We
repeat the experiment a large number N of times and record the N values taken by X. Intuitively, we
would expect that {X = x} occurs approximately P(X = x)N many times. So the average of the values
taken by X would approximately be∑

x xP(X = x)N

N
=

∑
x xfX(x)N

N
=
∑
x

xfX(x).

Definition 1.5.1. Let X be a discrete random variable with pmf fX(x). The expected value (or expec-
tation, or mean) of X, denoted by E(X), is

E(X) =
∑
x

xfX(x),

provided that
∑

x |xf(x)| converges.

We will soon give a precise mathematical meaning to the notion of expectation (thanks to the Laws
of large numbers). For the time being, the intuitive idea above is enough.

Remark 1.5.2. We use again the convention that
∑

x xfX(x) denotes the sum over the values of x for
which fX(x) 6= 0. Hence we are dealing with either a finite sum or the sum of a series, as X takes
countably many values.
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Remark 1.5.3. Since the expectation is defined only if
∑

x xfX(x) is absolutely convergent, the expec-
tation is a real number. Indeed, recall that if a series is absolutely convergent, then it is also convergent.

Asking only for convergence would not be enough for our purposes, as the following undesirable
property would hold: For each x ∈ R, there exists a rearrangement of the series converging to x (this
is the so-called Riemann’s rearrangement theorem). Luckily, in the case of absolute convergence, all
rearrangements converge to the same real number. As an example, think about the alternating harmonic
series

∑∞
n=1

(−1)n+1

n : it converges to ln 2 but we can rearrange the terms to make it convergent to any
x ∈ R!

Example 1.5.4. The expectation of the Bernoulli random variable in Example 1.4.13 is p. The expec-
tation of the Binomial random variable in Example 1.4.14 is np. The expectation of the Poisson random
variable in Example 1.4.16 is λ.

Exercise 1.5.5. Let X and Y be discrete random variables with pmf’s

fX(x) =
4

x(x+ 1)(x+ 2)
and fY (x) =

1

x(x+ 1)
,

respectively, where x = 1, 2, . . . . Check whether X and Y admit an expectation and, if so, compute the
value.

Given a discrete random variable X, how do we compute the expectation of the discrete random
variable Y = g(X)? Well, according to the definition, we first have to compute the pmf of the newly
defined Y = g(X).

Lemma 1.5.6. Let X be a discrete random variable and let g : R→ R. The pmf of Y = g(X) is

fY (y) =
∑

x: g(x)=y

fX(x).

Proof. We have that the composition function Y = g ◦ X acts as follows: ω ∈ Ω 7→ X(ω) ∈ R 7→
g(X(ω)) ∈ R. We rewrite the event {ω : Y (ω) = y}, in whose probability fY (y) we are interested in, as
a disjoint union:

{ω : Y (ω) = y} = {ω : g(X(ω)) = y} =
⋃

x: g(x)=y

{ω : X(ω) = x}.

By countable additivity,

P(Y = y) =
∑

x: g(x)=y

P(X = x) =
∑

x: g(x)=y

fX(x),

as claimed.

As doing the above procedure for each specific Y and then applying the definition of expectation
becomes pretty tedious, the following settle once and for all the computation we need.

Theorem 1.5.7 (Law of the unconscious statistician, LOTUS). Let X be a discrete random variable
and g : R→ R. Then

E(g(X)) =
∑
x

g(x)fX(x),

provided the series is absolutely convergent.
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Proof. Let Y = g(X). We have seen in Lemma 1.5.6 that the pmf of Y is

fY (y) =
∑

x: g(x)=y

fX(x).

Therefore, by definition of expectation,

E(Y ) =
∑
y

yfY (y)

=
∑
y

y
∑

x: g(x)=y

fX(x)

=
∑
y

∑
x: g(x)=y

yfX(x)

=
∑
y

∑
x: g(x)=y

g(x)fX(x)

=
∑
x

g(x)fX(x).

Example 1.5.8. Consider the following two discrete random variables X1 and X2, each taking three
values and with pmf given by

P(X1 = 49) = P(X1 = 51) =
1

4
and P(X1 = 50) =

1

2
;

P(X2 = 0) = P(X2 = 50) = P(X2 = 100) =
1

3
.

We have that

E(X1) = 49 · 1

4
+ 51 · 1

4
+ 50 · 1

2
= 50 and E(X2) = 0 · 1

3
+ 50 · 1

3
+ 100 · 1

3
= 50.

They have the same expected value but X1 is much less “dispersed” than X2.

In view of the previous example, we would like to introduce a measure of “dispersion”. One way
could be to measure how far things are from the expected value, on average. This leads to the notion of
variance.

Definition 1.5.9. The variance of a discrete random variable X is the quantity

var(X) = E((X − E(X))2).

The standard deviation of X is the quantity
√

var(X). The k-th moment of X is E(Xk).

Notice that in the previous definition we ask that the expectations involved exist.

Remark 1.5.10. How do we compute the variance of a discrete random variable X? We can use the
definition of expectation and first compute the pmf of the random variable (X − E(X))2. As already
mentioned, a faster way is relying on LOTUS as shown in the following. Let g(X) be the random
variable (X −E(X))2 i.e., the function mapping ω ∈ Ω to g(X(ω)) = (X(ω)−E(X))2. LOTUS allows us
to write

var(X) =
∑
x

(x− E(X))2fX(x).



CHAPTER 1. PROBABILITY 32

Clearly, var(X) ≥ 0, as the factors of each summand are non-negative. But when is that var(X) = 0?
Well, var(X) = 0 if and only if (x − E(X))2fX(x) = 0 for each x. This means that, for each x such that
fX(x) > 0, we have x − E(X) = 0. But then the random variable X is not really “random”: its value is
equal to E(X) with probability 1.

Exercise 1.5.11. Show that var(X1) 6= var(X2), where X1 and X2 are the random variables in Exam-
ple 1.5.8.

Proposition 1.5.12. Let X be a discrete random variable and let a, b ∈ R. Then

(a) E(aX + b) = aE(X) + b.

(b) var(aX + b) = a2var(X).

(c) var(X) = E(X2)− E(X)2.

Proof. We repeatedly use LOTUS and Remark 1.5.10.
(a)

E(aX + b) =
∑
x

(ax+ b)fX(x) = a
∑
x

xfX(x) + b
∑
x

fX(x) = aE(X) + b.

(b)

var(aX + b) =
∑
x

(ax+ b− E(aX + b))2fX(x)

=
∑
x

(ax− aE(X))2fX(x)

= a2
∑
x

(x− E(X))2fX(x)

= a2var(X).

(c) Exercise.

(a) and (b) show the behaviour of expectation and variance of g(X), when g is a linear function. (c)
provides an alternative way of computing the variance.

Example 1.5.13. Consider a Bernoulli random variable X with P(X = 1) = p and P(X = 0) = 1 − p.
Recall that E(X) = p. LOTUS and (c) above then imply that var(X) = (12 ·p+02 ·(1−p))−p2 = p(1−p).

Exercise 1.5.14. Show that the variance of the Poisson random variable with parameter λ > 0 is λ.

1.6 Multiple discrete random variables

It is often the case that each outcome of an experiment generates several real numbers of interest. We
have seen how to treat these as individual random variables but it is often important to consider their
“joint behaviour”. For example, complicated systems are monitored by several computers that work
together to run the system. If one fails or makes an error, the others can override it and the system fails
only when a majority of computers fail. If Xi denotes the time until the i-th processor fails, then the time
until the system fails depends jointly on the collection of random variables X1, . . . , Xn. As a concrete
easy example, consider the following.
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Example 1.6.1. We flip a fair coin twice and let X1 be the number of heads on the first flip, X2 be the
number of heads on the second flip and Y = 1 − X1. Clearly, all these random variables take values
in {0, 1} and have the same pmf (the constant function 1/2). So we might think that the pair (X1, X2)
“behaves” like the pair (X1, Y ). But they are in fact “different”. For example, in (X1, Y ), the value of
Y is completely determined by that of X1, whereas the values of X1 and X2 are independent. This is
not reflected by the pmf of the single variables and so we need to find a way to encode the information
about their “collective behaviour”.

Definition 1.6.2. Let X1, . . . , Xn be discrete random variables. Their joint pmf is the function defined
by

fX1,...,Xn(x1, . . . , xn) = P({X1 = x1} ∩ · · · ∩ {Xn = xn}).

We usually denote P({X1 = x1} ∩ · · · ∩ {Xn = xn}) by P(X1 = x1, . . . , Xn = xn).

Notice that fX1,...,Xn(x1, . . . , xn) is a non-negative function from Rn to R which is non-zero only on
a countable set of points of Rn, namely the vectors whose i-th component is one of the countably many
values Xi can take. Moreover, since Ω can be written as the union of pairwise disjoint events of the form
{X1 = x1} ∩ · · · ∩ {Xn = xn}, we have that∑

x1,...,xn

fX1,...,Xn(x1, . . . , xn) =
∑

x1,...,xn

P(X1 = x1, . . . , Xn = xn) = P(Ω) = 1.

Back to our example, we have that fX1,X2 is the constant function 1/4, whereas fX1,Y is 1/2 at the
points (0, 1) and (1, 0) and 0 at the points (0, 0) and (1, 1).

As with the case of one random variable, the purpose of introducing the joint pmf is to extract all the
information in the probability measure P that is relevant to the random variables we are considering. So
we should be able to compute the probability of any event defined just in terms of the random variables
by simply using their joint pmf. The following analogue of Lemma 1.4.30 in the case of multiple random
variables shows that we can indeed do that.

Proposition 1.6.3. Let X1, . . . , Xn be discrete random variables and A ⊆ Rn be a Borel set. Then

P((X1, . . . , Xn) ∈ A) =
∑

(x1,...,xn)∈A

fX1,...,Xn(x1, . . . , xn).

The following important result shows that if we know the joint mass function of two random vari-
ables, we can find all their separate mass functions. In this context, fX(x) and fY (y) are called marginal
pmf.

Corollary 1.6.4. Let X and Y be discrete random variables. Then

fX(x) =
∑
y

fX,Y (x, y) and fY (y) =
∑
x

fX,Y (x, y).

Proof. By countable additivity, we have

fX(x) = P(X = x) =
∑
y

P(X = x, Y = y) =
∑
y

fX,Y (x, y).

The expression for fY (y) is obtained similarly.
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You can think of Corollary 1.6.4 as follows. The joint pmf is represented by a (countable) table,
where the number in each square (x, y) is the value fX,Y (x, y). To calculate the marginal fX(x) for a
given value of x, we simply add the numbers in the column corresponding to x. Similarly, to calculate
the marginal pmf fY (y) for a given value of y, we add the numbers in the row corresponding to y.

Given a pair (X,Y ) of discrete random variables and a function g : R2 → R, we can build a new
discrete random variable Z = g(X,Y ) defined by Z(ω) = g(X,Y )(ω) = g(X(ω), Y (ω)). Similarly to
Lemma 1.5.6, the new random variable Z has pmf

fZ(z) =
∑

(x,y): g(x,y)=z

fX,Y (x, y).

We then have the following generalized version of the LOTUS whose proof we omit.

Theorem 1.6.5. E(g(X,Y )) =
∑

x,y g(x, y)fX,Y (x, y).

Corollary 1.6.6. Let X and Y be discrete random variables and a, b ∈ R. Then

E(aX + bY ) = aE(X) + bE(Y ).

Proof. We have:

E(aX + bY ) =
∑
x,y

(ax+ by)fX,Y (x, y)

= a
∑
x

∑
y

xfX,Y (x, y) + b
∑
x

∑
y

yfX,Y (x, y)

= a
∑
x

∑
y

xfX,Y (x, y) + b
∑
y

∑
x

yfX,Y (x, y)

= a
∑
x

x
∑
y

fX,Y (x, y) + b
∑
y

y
∑
x

fX,Y (x, y)

= a
∑
x

xfX(x) + b
∑
y

yfY (y)

= aE(X) + bE(Y ).

The first equality follows from Theorem 1.6.5. The exchange of the order of summation in the second
equality is possible thanks to absolute convergence of the series

∑
x,y(ax + by)fX,Y (x, y). The fifth

equality follows from Corollary 1.6.4.

Corollary 1.6.6 shows that the expectation is linear and obviously generalizes to n random variables:

E(a1X1 + · · ·+ anXn) = a1E(X1) + · · ·+ anE(Xn).

Example 1.6.7. By using the definition of expectation, we have seen that the expectation of a Binomial
random variable X with parameters n and p is np. A faster way to obtain this result is the following.

Let Xj be the random variable taking value 1 if the j-th flip resulted in heads and 0 otherwise (this
is nothing but a Bernoulli random variable with parameter p). As X counts the number of heads in the
n flips, we have that X = X1 + · · ·+Xn and so E(X) = E(X1 + · · ·+Xn) = E(X1) + · · ·+ E(Xn) = np.

Example 1.6.8 (Coupon collector). Each packet of a product is equally likely to contain any one of n
different types of coupon, independently of every other packet. What is the expected number of packets
you must buy to obtain at least one of each type of coupon?
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Let R be the number of packets required to complete a set of n distinct coupons. We need to compute
E(R). Let T1 be the number of packets required to obtain the first coupon, T2 the further number of
packets required to obtain a second type of coupon, T3 the further number required for a third type and
so on. Then, R =

∑n
i=1 Ti. It is easy to see that

P(Tk = r) =

Å
k − 1

n

ãr−1Ån− (k − 1)

n

ã
.

Hence Tk is a geometric random variable with parameter n−k+1
n and so with mean n

n−k+1 . Since R =∑n
k=1 Tk, we can then conclude by linearity of expectation that

E(R) = n
n∑
k=1

1

k
,

which is roughly n log n.

Exercise 1.6.9. Let X be the number of fixed points in a random permutation of n items, say for example
the number of students in a class of size n who receive their own homework after shuffling. Show that
E(X) = var(X) = 1.

Exercise 1.6.10. Let X be a discrete random variable taking nonnegative integer values. Show that
E(X) =

∑∞
x=1 P(X ≥ x). Use this to compute again the expectation of a geometric random variable

with parameter p.

1.7 Conditioning discrete random variables

Consider our usual setting (Ω,F ,P) of a probability space and let X be a discrete random variable.
Suppose that we know that some event B occurs with P(B) > 0. We have seen that this gives rise to
a (conditional) probability measure, namely the function P : F → R defined by P (A) = P(A|B) (see
Lemma 1.2.2). It makes therefore sense to consider the pmf of X with respect to the (conditional)
measure P .

Definition 1.7.1. Let X be a discrete random variable and let B be an event with P(B) > 0. The
conditional probability mass function of X given B is the function fX|B(x) = P(X = x|B).

Note that, by definition of conditional probability,

fX|B(x) = P(X = x|B) =
P(X = x,B)

P(B)
.

This function is clearly non-negative and
∑

x fX|B(x) = 1 (hence it is a legitimate pmf). Indeed, the
event B can be written as the countable union of pairwise disjoint events of the form {X = x} ∩ B
(where x ranges through the countably many values taken by X) and so

P(B) =
∑
x

P(X = x,B) =
∑
x

fX|B(x) · P(B) = P(B)
∑
x

fX|B(x).

Let now X and Y be two discrete random variables associated with the same probability space. If
we know that the value of Y is y (with fY (y) > 0), we can consider the conditional pmf of X given
the event {Y = y}. Definition 1.7.1 adapts as follows: the conditional pmf of X given Y = y is the
function

fX|Y (x|y)
def
= P(X = x|Y = y) =

P(X = x, Y = y)

P(Y = y)
=
fX,Y (x, y)

fY (y)
.

The conditional pmf is particularly useful if we want to compute the joint pmf. Indeed, we have
fX,Y (x, y) = fX|Y (x|y) · fY (y).
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Example 1.7.2. Consider four independent rolls of a 6-sided die. Let X be the number of 1’s and Y be
the number of 2’s obtained. What is the joint pmf of the discrete random variables X and Y ?

Intuitively, X and Y are “related” and fX|Y (x|y) = P(X = x|Y = y) should be easier to compute
than fX,Y (x, y) = P(X = x, Y = y). We then try to compute fY (y) and fX|Y (x|y) and multiply them
to get fX,Y (x, y). Notice first that X and Y are nothing but Binomial random variables with parameters
n = 4 and p = 1/6. Indeed, nothing prevents you to think of the die as a biased coin in which the face 2
represents the outcome heads and all the other faces the outcome tails. Therefore,

fY (y) =

Ç
4

y

åÅ
1

6

ãyÅ5

6

ã4−y
,

for y = 0, 1, 2, 3, 4. Suppose now we have observed that Y = y. Then X is the number of 1’s in the
remaining 4 − y rolls, each of which can take one of the remaining values {1, 3, 4, 5, 6} with probability
1/5. This is again a Binomial random variable with parameters n = 4− y and p = 1/5 and so

fX|Y (x|y) = P(X = x|Y = y) =

Ç
4− y
x

åÅ
1

5

ãxÅ4

5

ã4−y−x
,

for x, y = 0, 1, 2, 3, 4 with 0 ≤ x+ y ≤ 4.

The conditional pmf can also be used to compute one marginal pmf given the other. Indeed, Corol-
lary 1.6.4 implies that

fX(x) =
∑
y

fX,Y (x, y) =
∑
y

fX|Y (x|y) · fY (y),

which is morally the same as the law of total probability.

1.8 Conditional expectation of discrete random variables

This is the same as ordinary expectation except that it refers to the conditional pmf.

Definition 1.8.1. Let X and Y be discrete random variables. The conditional expectation of X given
the event B is

E(X|B) =
∑
x

xfX|B(x),

provided that the series is absolutely convergent.
Adapting the above to events of the form {Y = y}, we obtain the conditional expectation of X

given Y = y:
E(X|Y = y) =

∑
x

xfX|Y (x|y).

Expectation and conditional expectation are related by the following important result. In words, it
basically says that “the unconditional average can be obtained by averaging the conditional averages”.

Theorem 1.8.2 (Total expectation theorem). Let X and Y be discrete random variables. Then

E(X) =
∑
y

E(X|Y = y) · fY (y),

provided that the expectations exist.
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Proof. Recall that fX(x) =
∑

y fX|Y (x|y)fY (y). Therefore,

E(X) =
∑
x

xfX(x)

=
∑
x

x
∑
y

fX|Y (x|y)fY (y)

=
∑
x

∑
y

xfX|Y (x|y)fY (y)

=
∑
y

∑
x

xfX|Y (x|y)fY (y)

=
∑
y

fY (y)
∑
x

xfX|Y (x|y)

=
∑
y

fY (y) · E(X|Y = y),

where the exchange of summation is possible thanks to absolute convergence.

Corollary 1.8.3. Let B1, B2, . . . be a partition of Ω such that P(Bi) > 0 for each i. Then

E(X) =
∑
i

E(X|Bi) · P(Bi).

Proof. Let Y be the discrete random variable that takes the value i if and only if Bi occurs. Clearly,

fY (i) = P(Y = i) =

®
P(Bi) for i = 1, 2, . . .;

0 otherwise.

By the Total expectation theorem,

E(X) =
∑
i

E(X|Y = i) · fY (i) =
∑
i

E(X|Bi) · P(Bi),

as ω ∈ Bi if and only if ω ∈ {Y = i}.

Theorem 1.8.2 and Corollary 1.8.3 are the “expectation versions” of the law of total probability.

Example 1.8.4. We have already computed the expectation of the geometric random variable in sev-
eral different ways. To show the versatility of the Total expectation theorem, we provide yet another
computation. Recall that the pmf of a geometric random variable X with parameter p is given by
fX(x) = (1 − p)x−1p. We use Corollary 1.8.3 by conditioning on the outcome of the first toss (as it is
good practice when we have repeated independent trials). Therefore, consider the events {X = 1} (i.e.,
the first toss gives heads) and its complement {X > 1}. Clearly, P(X = 1) = p and P(X > 1) = 1− p.

Given that the first toss is heads, the expected number of tosses before getting heads should be 1 i.e.,
E(X|X = 1) = 1. Indeed,

E(X|X = 1) =

∞∑
x=1

xP(X = x|X = 1) = 1,

as only the first term of the series is nonzero.
Intuitively, given that the first toss is tails, the expected number of tosses before getting heads should

be E(X|X > 1) = E(X) + 1. Let’s check it. We have that

E(X|X > 1) =
∞∑
x=1

xP(X = x|X > 1) =
∞∑
x=2

xP(X = x|X > 1).
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But now observe that, for each x ≥ 2,

P(X = x|X > 1) =
P(X = x,X > 1)

P(X > 1)
=

P(X = x)

P(X > 1)
= (1− p)x−2p = P(X = x− 1).

Therefore,

E(X|X > 1) =

∞∑
x=2

xP(X = x− 1)

=
∞∑
x=2

(x− 1 + 1)P(X = x− 1)

=

∞∑
x=2

(x− 1)P(X = x− 1) +

∞∑
x=2

P(X = x− 1)

= E(X) + 1.

Corollary 1.8.3 then implies that

E(X) = E(X|X = 1)P(X = 1) + E(X|X > 1)P(X > 1) = 1 · p+ (1 + E(X))(1− p),

from which we obtain E(X) = 1/p.

Exercise 1.8.5. Show that the geometric random variable X has the lack of memory property. Namely,
P(X > m+ n|X > m) = P(X > n), for each m and n in N.

1.9 Independence of discrete random variables

Definition 1.9.1. Two discrete random variables X and Y are independent if fX,Y (x, y) = fX(x)fY (y)
for each pair (x, y) ∈ R2. More generally, a family of n discrete random variables X1, . . . , Xn is indepen-
dent if

fX1,...,Xn(x1, . . . , xn) =
n∏
i=1

fXi(xi)

for each (x1, . . . , xn) ∈ Rn. Finally, an arbitrary family of random variables is independent if each finite
subfamily is.

Notice that X and Y are independent if and only if the events {X = x} and {Y = y} are independent
for each (x, y) ∈ R2. Recall that fX,Y (x, y) = fX|Y (x|y) · fY (y). Therefore, X and Y are independent if
and only if fX|Y (x|y) = fX(x) for each y with fY (y) > 0 and for each x i.e., the experimental value of Y
tells us nothing about the value of X.

Example 1.9.2. Consider again the random variables X1, X2 and Y = 1 − X1 in Example 1.6.1. We
have that X1 and X2 are independent but X1 and Y are not.

Example 1.9.3. Let X1 and X2 be independent Poisson random variables with parameters λ1 and λ2,
respectively. What is the pmf of X1 + X2? We need to determine P(X1 + X2 = n). We use the Law of
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total probability and independence:

P(X1 +X2 = n) =
n∑
k=0

P(X1 = k,X2 = n− k) =
n∑
k=0

P(X1 = k)P(X2 = n− k)

=
n∑
k=0

e−λ1
λk1
k!
· e−λ2 λn−k2

(n− k)!

= e−(λ1+λ2)
n∑
k=0

λk1λ
n−k
2

k!(n− k)!

=
e−(λ1+λ2)

n!

n∑
k=0

n!

k!(n− k)!
λk1λ

n−k
2

= e−(λ1+λ2) (λ1 + λ2)n

n!
,

where in the last equality we used the Binomial theorem. The computation shows that X1 + X2 is a
Poisson random variable with parameter λ1 + λ2.

Exercise 1.9.4. Let X1 and X2 be independent Poisson random variables with parameters λ1 and λ2,
respectively.

(i) Compute the conditional pmf of X1 given that X1 +X2 = n.

(ii) Using (i), compute the conditional expectation of X1 given that X1 +X2 = n.

(iii) Observe that in order to compute E(X1|X1 + X2 = n) we can instead use symmetry and linearity of
expectation: E(X1|X1 +X2 = n) = 1

2E(X1 +X2|X1 +X2 = n).

Example 1.9.5. Let Y1, Y2, . . . be a family of independent discrete random variables. It is intuitively
clear that the events {Yn+1 = yn+1} and {Y1 = y1, Y1 + Y2 = y2, . . . , Y1 + Y2 + · · · + Yn = yn} are
independent. Let’s formally show it. Call the last event A. We have that

A = {Y1 = y1, Y2 = y2 − y1, . . . , Yn = yn − yn−1 − · · · − y1}

and so

P(Yn+1 = yn+1, A) = P(Yn+1 = yn+1, Y1 = y1, Y2 = y2 − y1, . . . , Yn = yn − yn−1 − · · · − y1)

= P(Yn+1 = yn+1)P(Y1 = y1)P(Y2 = y2 − y1) · · ·P(Yn = yn − yn−1 − · · · − y1)

= P(Yn+1 = yn+1)P(Y1 = y1, Y2 = y2 − y1, . . . , Yn = yn − yn−1 − · · · − y1)

= P(Yn+1 = yn+1)P(A),

where we have simply used the definition of independence of random variables in the second and third
equalities.

Theorem 1.9.6. Let X and Y be independent discrete random variables. Then

(a) For arbitrary Borel sets A,B ⊆ R, we have that P(X ∈ A, Y ∈ B) = P(X ∈ A)P(Y ∈ B).

(b) For any functions g, h : R→ R, we have that g(X) and h(Y ) are independent.

Notice that (a) extends to a family X1, . . . , Xn of n independent discrete random variables: for
arbitrary Borel sets S1, . . . , Sn ⊆ R, we have

P(X1 ∈ S1, . . . , Xn ∈ Sn) =

n∏
i=1

P(Xi ∈ Si).
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Proof. (a) We have that {X ∈ A, Y ∈ B} =
⋃
x∈A, y∈B{X = x, Y = y}, where the union is countable

since both X and Y are discrete random variables. But then countable additivity and independence
imply that

P(X ∈ A, Y ∈ B) =
∑
x∈A

∑
y∈B

P(X = x, Y = y)

=
∑
x∈A

∑
y∈B

P(X = x)P(Y = y)

=

Å∑
x∈A

P(X = x)

ãÅ∑
y∈B

P(Y = y)

ã
= P(X ∈ A)P(Y ∈ B)

(b) It will be part of a homework assignment.

Exercise 1.9.7. Let X1, . . . , Xn be a family of independent random variables. Show that the events {X1 =
x1}, . . . , {Xn = xn} are independent in the sense of Definition 1.3.1. In other words, you have to show that

P(∩j∈J{Xj = xj}) =
∏
j∈J

P({Xj = xj}),

for each subset J of {1, . . . , n}.

Exercise 1.9.8. Let X and Y be independent geometric random variables with pmf’s fX(x) = (1−λ)λx−1

and fY (y) = (1− µ)µy−1, respectively. Find the pmf of Z = min{X,Y }.

It is in general not true that, given two discrete random variables X and Y , E(XY ) = E(X)E(Y )
holds. Consider for example the random variable X taking values 1 and −1, each with probability 1/2.
Then E(X) = 0 and E(X2) = 1. Taking Y = X we see that indeed E(XY ) = E(X)E(Y ) does not hold.
However, the situation changes if X and Y are independent:

Theorem 1.9.9. Let X and Y be independent discrete random variables such that E(X) and E(Y ) exist.
Then E(XY ) exists and E(XY ) = E(X)E(Y ).

Proof. We only show that E(XY ) = E(X)E(Y ). We use Theorem 1.6.5 with the function g : R2 → R
given by g(x, y) = xy:

E(XY ) =
∑
x

∑
y

xyfX,Y (x, y) =
∑
x

∑
y

xyfX(x)fY (y) =
∑
x

xfX(x)
∑
y

yfY (y) = E(X)E(Y ),

where the second equality follows by independence.

Remark 1.9.10. If X and Y are independent, we have seen that g(X) and h(Y ) are independent as well
and so, by Theorem 1.9.9, E(g(X)h(Y )) = E(g(X))E(h(Y )).

Recall that the expectation is linear. In particular, E(X + Y ) = E(X) + E(Y ) for any two random
variables X and Y . Although not true in general2, variance is linear for families of independent random
variables.

Theorem 1.9.11. If X and Y are independent discrete random variables, then var(X + Y ) = var(X) +
var(Y ).

2For a counterexample consider again X = Y , where X takes values 1 and −1, each with probability 1/2.
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Proof. We have

var(X + Y ) = E((X + Y )2)− (E(X + Y ))2

= E(X2) + E(Y 2) + 2E(XY )− (E(X))2 − (E(Y ))2 − 2E(X)E(Y )

= var(X) + var(Y ),

where in the first equality we used Proposition 1.5.12(c), in the second we used LOTUS to expand
the first term and linearity of expectation to expand the second term, and in the last equality we used
Theorem 1.9.9.

Example 1.9.12. Let us compute the variance of a Binomial random variable X with parameters n and
p. Recall from Example 1.6.7 that X can be written as the sum of n Bernoulli random variables Xi with
P(Xi = 1) = p and P(Xi = 0) = 1− p. By independence of coin tosses, X1, . . . , Xn are independent and
so var(X) = var(X1) + · · ·+ var(Xn) = np(1− p).

We now introduce an indicator of “dependence” between two random variables:

Definition 1.9.13. The covariance of the discrete random variables X and Y is

cov(X,Y ) = E[(X − E(X))(Y − E(Y ))]

and X and Y are uncorrelated if cov(X,Y ) = 0.

The covariance of two random variables is a measure of their tendency to be larger than their ex-
pected value together. A negative covariance means that when one of the variables is larger than its
mean, the other is more likely to be less than its mean. By linearity of expectation, we have that

cov(X,Y ) = E[(X − E(X))(Y − E(Y ))] = E(XY )− E(X)E(Y )

and so cov(X,Y ) = 0 if and only if E(XY ) = E(X)E(Y ). Even though independence implies uncorrela-
tion, the converse is not true, as shown in the following:

Example 1.9.14. Let X be a discrete random variable such that fX(x) = fX(−x) for each x ∈ Im(X).
Suppose that E(X3) exists and let Y = X2. Clearly, X and Y are not independent. However, by LOTUS,
we have

E(XY ) = E(X3) =
∑
x>0

x3(fX(x)− fX(−x)) = 0.

Similarly,
E(X) =

∑
x>0

x(fX(x)− fX(−x)) = 0

and so E(XY ) = E(X)E(Y ).

Exercise 1.9.15. Show that a random variable X with the properties listed in Example 1.9.14 exists.

1.10 Laws of large numbers and modes of convergence

Throughout this section, we assume that the random variables we are working with are discrete. Notice
however that all stated results hold for any type of random variables.

Very often, in stochastics, we want to assert that some sequence of random variables tends to a limit
in a suitable probabilistic sense. Limit theorems are useful for several reasons:
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• They provide an interpretation of expectations in terms of a long sequence of identical independent
experiments.

• They allow for an approximate analysis of the properties of random variables such as X1+···+Xn
n ,

where in contrast an exact analysis might reveal to be a complicated task.

• They describe the long term behavior of a stochastic process: We will see shortly that a stochastic
process is nothing but a sequence {Xn} of random variables indexed by time n.

We begin by considering the following classical situation. Let X1, X2, . . . be a sequence of indepen-
dent identically distributed (i.i.d. for short) random variables with expectation µ and variance σ2. We
look at the random variable

Mn =
X1 + · · ·+Xn

n
.

By linearity of expectation,

E(Mn) =
1

n
(E(X1) + · · ·+ E(Xn)) = µ.

Since X1, . . . , Xn are independent, Proposition 1.5.12 and Theorem 1.9.11 imply that

var(Mn) =
1

n2
var(X1 + · · ·+Xn) =

1

n2
(var(X1) + · · ·+ var(Xn)) =

σ2

n
.

In particular, the variance of Mn decreases to 0 as n increases. This phenomenon is the subject
of the so-called Laws of large numbers, asserting that the random variables Mn converge to µ in a
precise sense. We will see how this provides mathematical justification for the loose interpretation of
the expectation of a random variable X as the average of a large number of independent samples drawn
from the distribution of X.

In order to make the discussion above more precise, we need to introduce some probability inequal-
ities. We remark that they hold for continuous random variables as well (with almost identical proofs,
provided we define the expectation and variance of a continuous random variable) but we should con-
tent ourselves with discrete ones.

Theorem 1.10.1 (Markov’s inequality). LetX be a non-negative random variable. Then, for each a > 0,

P(X ≥ a) ≤ E(X)

a
.

Proof. Fix a > 0 and consider the discrete random variable Ya defined by

Ya =

®
0 if X < a;

a if X ≥ a;

By construction, X ≥ Ya (this should be understood as X(ω) ≥ Ya(ω) for each ω ∈ Ω). But then, using
monotonicity of expectation (show that it indeed holds!), we have

E(X) ≥ E(Ya) = aP(Ya = a) = aP(X ≥ a),

as claimed.

In words, if a non-negative random variable has small expectation, then the probability that it takes
a large value is small.

Theorem 1.10.2 (Chebyshev’s inequality). Let X be a random variable. Then, for each c > 0,

P(|X − E(X)| ≥ c) ≤ var(X)

c2
.
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Proof. We apply Markov’s inequality to the nonnegative random variable (X − E(X))2 and take a = c2:

P((X − E(X))2 ≥ c2) ≤ E((X − E(X))2)

c2
=

var(X)

c2
.

But the event {(X − E(X))2 ≥ c2} is the same as the event {|X − E(X)| ≥ c} and the conclusion
follows.

In words, if a random variable has small variance, then the probability that it takes a value far from
its expectation is small.

Example 1.10.3. Let X be the random variable counting the number of students in a class of size n
who receive their own homework after shuffling. Recall from Exercise 1.6.9 that E(X) = var(X) = 1.
We now want to estimate P(X ≥ 20). By monotonicity and Chebyshev’s inequality,

P(X ≥ 20) ≤ P(|X − 1| ≥ 19) ≤ 1

192
.

Notice this is independent of the class size n.

Example 1.10.4. Let X be a discrete random variable with E(X) = E(X2) = 0. Then X = 0 almost
surely i.e., P(X = 0) = 1. This should sound familiar, as we have already observed it. We use Chebyshev’s
inequality to deduce it again. Since var(X) = E(X2)− (E(X))2 = 0, Chebyshev’s inequality implies that
P(|X| ≥ c) = 0 for each c > 0. But {|X| > 0} =

⋃
k∈N{|X| > 1/k} and so the union bound implies that

P(|X| > 0) ≤
∞∑
k=1

P(|X| > 1/k) = 0,

from which we obtain that P(X = 0) = 1.

Exercise 1.10.5. Let X be a discrete random variable with mean µ = 10 and σ2 = 5. Estimate the
probability P(3 < X < 15).

Let’s now go back to our sequence X1, X2, . . . of i.i.d. random variables with expectation µ and
variance σ2. We have seen that the random variable

Mn =
X1 + · · ·+Xn

n

has expectation E(Mn) = µ and variance var(Mn) = σ2/n. Applying Chebyshev’s inequality to Mn and
taking c = ε, we have that for each ε > 0,

P(|Mn − µ| ≥ ε) ≤
σ2

nε2
.

But for fixed ε > 0, the RHS goes to 0 as n tends to∞. We have therefore proved the following:

Theorem 1.10.6 (Weak law of large numbers, WLLN). Let X1, X2, . . . be i.i.d. random variables with
expectation µ. Then, for each ε > 0,

P
Å∣∣∣∣X1 + · · ·+Xn

n
− µ

∣∣∣∣ ≥ εã→ 0

as n→∞.



CHAPTER 1. PROBABILITY 44

Remark 1.10.7. Notice that, if we drop the independence assumption, the theorem will generally be
false. Consider for example the case where Xi = X for each i and the random variable X is not a
constant random variable.

A consequence of the WLLN is the following interpretation of the expectation of a random variable:
The arithmetic average of a sequence of independent observations of a random variable X converges
with high probability to E(X). More precisely,

we can estimate the expectation of a random variable with any amount of precision with arbitrary
probability if we use a sufficiently large number of samples of its value.

Now, the WLLN is not completely satisfactory as it just states that the probability P(|Mn − µ| ≥ ε)
of a significant deviation of Mn from µ goes to zero as n → ∞. Still, for any n ∈ N, this probability
might be positive and it is conceivable that once in a while, even if infrequently, Mn deviates significantly
from µ. The problem of the WLLN is that it deals with a somewhat weak notion of convergence, called
convergence in probability. What would back our intuitive notion of expectation though, is another
notion of convergence, called convergence almost surely, according to which Mn converges to µ with
probability 1. We will see how this implies that, for any given ε > 0, the difference |Mn − µ| exceeds ε
only finitely many times.

But what does it mean that “the sequence of random variables {Xn} converges to the random variable
X?” TheXn being random variables, they are in particular functions Ω→ R, so this involves convergence
of functions. There are a number of possibilities.

Definition 1.10.8 (Modes of convergence). Let (Ω,F ,P) be a probability space and let X,X1, X2, . . .
be a sequence of random variables.

• {Xn} converges to X pointwise if Xn(ω) → X(ω) for each ω ∈ Ω (this is the usual pointwise
convergence of functions).

• {Xn} converges to X almost surely (or, almost everywhere) if

P({ω : Xn(ω)→ X(ω)}) = 1,

denoted by Xn
a.s.−−→ X.

• {Xn} converges to X in probability if, for each ε > 0,

P({ω : |Xn(ω)−X(ω)| ≥ ε})→ 0 as n→∞,

denoted by Xn
p−→ X.

Using the language just introduced, we then have that the WLLN asserts the convergence in proba-
bility of the sequence of random variables {Mn} to the constant random variable µ.

Remark 1.10.9. Notice that, for each ω ∈ Ω, {Xn(ω)} is a sequence of real numbers and X(ω) ∈ R. The
symbol→ in the previous definition denotes the usual convergence of real sequences.

Remark 1.10.10. In the definition of convergence almost surely we are implicitly assuming that {ω :
Xn(ω)→ X(ω)} ∈ F . The proof of this fact is extremely tedious and we happily omit it.
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The notions of convergence in the definition above are listed in decreasing order of strength, namely

pointwise convergence =⇒ convergence almost surely =⇒ convergence in probability.

The last implication requires some work but we can already notice that pointwise convergence obviously
implies convergence almost surely. Convergence almost surely is like pointwise convergence, except that
there can be a set of probability zero on which the sequence fails to converge. Intuitively, what happens
on a set of probability zero should not really matter and in fact convergence almost surely is the gold
standard for convergence, the best you can hope for.

Example 1.10.11. Pointwise convergence is an extremely strong mode of convergence and almost
never happens. Consider for example the experiment of repeatedly and independently tossing a fair
coin. As usual, let Mn be the relative frequency of heads in the first n coin tosses. Does the sequence
{Mn} converge pointwise to 1/2, the expectation of getting heads? Well, no. Just take ω to be the out-
come (H,H,H, . . . ) consisting of all heads. We have thatMn(ω) = 1 for each n and soMn(ω)→ 1 6= 1/2.
This shows that we cannot hope to replace convergence in probability in the statement of the WLLN with
pointwise convergence. On the other hand, we will see that convergence almost surely will work!

Example 1.10.12. Suppose that Xn
p−→ X and that Xn

p−→ Y as well. Then we luckily have that P(X =
Y ) = 1. In other words, we have uniqueness of the limit almost surely. Imagine how bad it would be if
this failed to hold! Let’s check it. Observe first that {X 6= Y } =

⋃
k∈N{|X − Y | > 1/k}. So if we show

that P(|X − Y | > 1/k) = 0 for each k ∈ N, we can then invoke the union bound and conclude. But for
each ε > 0, we have that

P(|X − Y | > ε) = P(|X −Xn +Xn − Y | > ε) ≤ P(|Xn −X| > ε/2) + P(|Xn − Y | > ε/2), (1.5)

where we used the triangle inequality |X −Xn +Xn − Y | ≤ |Xn −X|+ |Xn − Y |, which implies that

{|X −Xn +Xn − Y | > ε} ⊆ {|Xn −X| > ε/2} ∪ {|Xn − Y | > ε/2}.

But the last two terms in Equation (1.5) go to 0 as n→∞, thanks to convergence in probability, and so
indeed P(|X − Y | > ε) = 0.

The following is a useful characterization of convergence almost surely. It essentially asserts that
Xn

a.s.−−→ X if and only if, almost surely, only finitely many Xn’s deviate from X.

Lemma 1.10.13. Xn
a.s.−−→ X if and only if, for each ε > 0,

P({ω : |Xn(ω)−X(ω)| ≥ ε i.o.}) = 0.

Proof. Suppose first that Xn
a.s.−−→ X. Fix an outcome ω ∈ {ω : Xn(ω) → X(ω)}. By definition of

convergence of a sequence of real numbers, for each ε > 0, there exists Nω,ε such that, if n ≥ Nω,ε, then
|Xn(ω)−X(ω)| < ε. Therefore, for such ω, |Xn(ω)−X(ω)| ≥ ε only finitely often and so

{ω : Xn(ω)→ X(ω)} ⊆ {ω : |Xn(ω)−X(ω)| ≥ ε i.o.}c.

Since the event on the LHS has probability one by assumption,

P({ω : |Xn(ω)−X(ω)| ≥ ε i.o.}) = 0.

Conversely, suppose that, for each ε > 0, P({ω : |Xn(ω)−X(ω)| ≥ ε i.o.}) = 0. Consider the event

A =
⋃
k∈N
{ω : |Xn(ω)−X(ω)| ≥ 1/k i.o.}.
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By the union bound and our assumption, P(A) = 0. We claim that {ω : Xn(ω) → X(ω)}c ⊆ A. Indeed,
let ω ∈ {ω : Xn(ω)→ X(ω)}c. Then the real sequence {Xn(ω)} does not converge to X(ω) and so there
exists ε > 0 such that |Xn(ω)−X(ω)| ≥ ε infinitely often. But then taking k such that ε > 1/k, we have
that ω ∈ {ω : |Xn(ω)−X(ω)| ≥ 1/k i.o.} and so ω ∈ A. Since P(A) = 0, we conclude that

P({ω : Xn(ω)→ X(ω)}) = 1,

as desired.

Example 1.10.14. Convergence in probability does not imply convergence almost surely. Indeed, con-
sider a sequence of independent Bernoulli random variables {Xn} such that, for each n ∈ N,

P(Xn = 1) =
1

n
and P(Xn = 0) = 1− 1

n
.

We claim that it converges in probability to the constant random variable 0. Indeed, for each ε > 0,

P({ω : |Xn(ω)− 0| ≥ ε}) = P({ω : Xn(ω) = 1}) =
1

n
→ 0 as n→∞.

On the other hand, we now verify that the sequence does not converge to 0 almost surely. We use
Lemma 1.10.13. Given ε > 0, we have that

P({ω : |Xn(ω)| ≥ ε i.o.}) = P({ω : Xn(ω) = 1 i.o.}).

But the second Borel-Cantelli lemma implies that this last probability is 1, as
∑∞

n=1 P(Xn = 1) =∑∞
n=1 1/n diverges. Therefore, by Lemma 1.10.13, we conclude that the sequence does not converge

almost surely.

Example 1.10.15. Consider a random variableX such that P(|X| < 1) = 1. We verify that the sequence
{X/n} converges to the constant random variable 0 almost surely. In view of Lemma 1.10.13, it is enough
to show that, for each fixed ε > 0,

P({ω : |X(ω)/n| ≥ ε i.o.}) = 0.

This is screaming for Borel-Cantelli. Indeed, by the first Borel-Cantelli lemma, it is enough to show that∑∞
n=1 P(|X| ≥ nε) converges. But there obviously exists N ∈ N such that nε ≥ 1 for each n ≥ N . Since

P(|X| ≥ 1) = 0, this implies that only finitely many terms of the series are non-zero and so the series
converges.

Exercise 1.10.16. Let X be the uniform random variable on [a, b] (see Example 1.4.11), where 0 ≤ a ≤ b.
Show that the sequence { (−1)nX

n } converges to 0 almost surely.

Exercise 1.10.17. Let α > 0 and let {Xn} be a sequence of independent random variables such that, for
each n ∈ N,

P(Xn = n) =
1

nα
and P(Xn = 0) = 1− 1

nα
.

Determine the values of α for which the sequence converges to 0 in probability and those for which it
converges to 0 almost surely.

Exercise 1.10.18. Show that, if Xn
a.s.−−→ X and Yn

a.s.−−→ Y , then Xn + Yn
a.s.−−→ X + Y .

Exercise 1.10.19. Let X be a Bernoulli random variable with parameter p = 1/2. Let {Xn} be a sequence
of random variables such that, for each n ∈ N, X2n = X and X2n−1 = 1−X. Does Xn

p−→ X?
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We will now show a technical result which will be used in the proof that convergence almost surely
implies convergence in probability. It relates lim inf and lim sup of sequences of real numbers to lim inf
and lim sup of sequences of sets.

Lemma 1.10.20. Let A1, A2, . . . be events. Then

P(lim inf
n

An) ≤ lim inf
n→∞

P(An) ≤ lim sup
n→∞

P(An) ≤ P(lim sup
n

An)

Proof. The middle inequality follows from the properties of lim infn→∞ and lim infn→∞ of a sequence
of real numbers. We show the last inequality and leave the first as an exercise. Let Bm =

⋃
n≥mAn. By

definition of lim supnAn and continuity of probability, we have

P(lim sup
n

An) = P
Å ⋂
m≥1

Bm

ã
= lim

m→∞
P(Bm).

But Am ⊆ Bm and so P(Bm) ≥ P(Am), from which we obtain the desired inequality.

The following result, combined with Example 1.10.14, shows that convergence almost surely is
stronger than convergence in probability.

Proposition 1.10.21. If Xn
a.s.−−→ X, then Xn

p−→ X.

Proof. Let ε > 0 and let An = {ω : |Xn(ω)−X(ω)| ≥ ε}. Since Xn
a.s.−−→ X, Lemma 1.10.13 implies that

P(lim sup
n

An) = P({ω : |Xn(ω)−X(ω)| ≥ ε i.o.}) = 0,

and so, by Lemma 1.10.20,
lim sup
n→∞

P(An) ≤ P(lim sup
n

An) = 0.

Therefore, the real sequence {P(An)} converges to 0 and this simply means that Xn
p−→ X.

We can finally prove the anticipated strengthening of the WLLN that guarantees convergence almost
surely of {Mn} to the mean µ. We will make use of the following classical inequality whose proof is
omitted: It has an analytical counterpart that might be familiar to the reader and in fact the two results
can be proved essentially in the same way.

Theorem 1.10.22 (Cauchy-Schwarz inequality). Let X and Y be random variables such that E(X2)
and E(Y 2) exist. Then

|E(XY )| ≤
»

E(X2)E(Y 2).

Theorem 1.10.23 (Strong law of large numbers, SLLN). Let X1, X2, . . . be i.i.d. random variables
with expectation µ. Then

X1 + · · ·+Xn

n

a.s.−−→ µ.

Proof. For simplicity we show the result under the additional assumptions that µ = 0 and E(X4
i ) ≤ c for

some c ∈ R and each i. In other words, the 4th moments are bounded.
Let Sn = X1 + · · ·+Xn and let ε > 0 be arbitrary. The random variable |Sn| is nonnegative and the

events {|Sn| ≥ nε} and {S4
n ≥ n4ε4} coincide. Therefore, Markov’s inequality implies that

P(|Sn| ≥ nε) = P(S4
n ≥ n4ε4) ≤ E(S4

n)

n4ε4
. (1.6)
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We now expand E(S4
n) using linearity:

E(S4
n) = E((X1 + · · ·+Xn)4) = E

Å n∑
i1,...,i4=1

Xi1Xi2Xi3Xi4

ã
=

n∑
i1,...,i4=1

E(Xi1Xi2Xi3Xi4).

Let us now look at what happens to the terms of the form E(X3
iXj), for i 6= j. Since Xi and Xj

are independent, X3
i and Xj are independent (Theorem 1.9.6) and so, by Theorem 1.9.9, E(X3

iXj) =
E(X3

i )E(Xj) = 0, as E(Xj) = µ = 0 by assumption. Similarly, E(X2
iXjXk) = 0 and E(XiXjXkX`) =

0, where all considered indices are distinct (Exercise 1.10.24). But then only the terms of the form
E(X4

i ) and E(X2
iX

2
j ) survive. We have n terms of the first type and 3n(n − 1) terms of the second

type (Exercise 1.10.25). We now bound E(S4
n). By assumption E(X4

i ) ≤ c and by the Cauchy-Schwarz
inequality

E(X2
iX

2
j ) ≤

»
E(X4

i )E(X4
j ) ≤

√
c2 = c.

Therefore,
E(S4

n) ≤ nc+ 3n(n− 1)c ≤ 3n2c.

We now use this bound in Equation (1.6) to obtain

P
Å |Sn|

n
≥ ε
ã
≤ E(S4

n)

n4ε4
≤ 3n2c

n4ε4
=

3c

n2ε4
.

Since the series
∑∞

n=1 1/n2 converges, we then have that the series

∞∑
n=1

P
Å |Sn|

n
≥ ε
ã

converges as well and so, by the first Borel-Cantelli, we have that

P
Å |Sn|

n
≥ ε i.o.

ã
= 0.

By Lemma 1.10.13, we then have that X1+···+Xn
n converges to µ = 0 almost surely.

As a side remark, it is unclear who between Borel and Cantelli first proved the SLLN; what is certain
is that it is a beautiful piece of mathematics. Kolmogorov made the autorship issue pointless by providing
several generalizations some years after.

Exercise 1.10.24. Show that if X1, X2, . . . is a (countable) family of independent random variables, then
E(X2

iXjXk) = 0 and E(XiXjXkX`) = 0, where all considered indices are distinct.

Exercise 1.10.25. Show that, in the expansion of (X1 + · · · + Xn)4, there are n terms the form X4
i and

3n(n− 1) terms of the form X2
iX

2
j (i 6= j).

According to the SLLN, with probability 1, {X1+···+Xn
n } converges to the expectation µ of the Xi’s.

This means that, for any given ε > 0, the difference |Mn − µ| exceeds ε only for finitely many n
(Lemma 1.10.13).

But the SLLN does in fact more than explaining the meaning of the expectation of a random variable.
Recall that we intuitively identified the probability of an event with the frequency with which it occurs
in an infinitely long sequence of independent trials. This was in fact our guiding intuition behind the
abstract definition of the probability measure P (Definition 1.1.17). We now argue that the SLLN beauti-
fully backs this intuition and establishes that the long-term frequency of occurrence of A is indeed equal
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to P(A) almost surely i.e., with probability 1. We should be relieved: the very abstract theory built on
the three probability axioms is consistent with our intuition!

Suppose indeed we run an experiment and we want to compute P(A), for some event A. Suppose
the experiment is repeatable and each time results are independent of all other trials. Let Xi be the
random variable with value 1 if A occurs and 0 otherwise (this is called the indicator random variable
of A). Clearly, E(Xi) = 1 · P(Xi = 1) = P(A). But then the SLLN implies that

X1 + · · ·+Xn

n

a.s.−−→ P(A).

Since X1+···+Xn
n is the fraction of time A occurred,

we might indeed think of P(A) as the frequency of occurrence of A if we could repeat the experi-
ment indefinitely and each time results were independent of all other trials.



Chapter 2

Markov Chains

We now change viewpoint and transition from classical probability to stochastic processes. Some of
the same subjects (for example, sums of independent random variables and convergence) will return in
different guises. But we will shift from a static to a dynamic viewpoint, from single random variables
and limit theorems to processes which evolve in time.

We have seen that random variables can be interpreted as measurements of some random systems.
Most systems evolve in time and one wants to be able to analyze such systems. This can be done, for
example, by repeated measurements indexed by the time of the measurement. This is modelled by
objects called stochastic processes. For the time being, we will content ourselves with considering the
time discrete:

Definition 2.0.1. A sequence {Xn}n≥0 of discrete random variables with values in a countable set E is
a discrete-time stochastic process with state space E. The elements of E will be denoted by i, j, k, . . .
and, if Xn = i, the process is said to be in state i at time n, or to visit state i at time n.

Sequences of independent random variables are stochastic processes but they are not very interesting
as stochastic models, as they essentially behave in the same way. Similarly, sequences of partial averages
are discrete-time stochastic processes. In order to introduce variability, we should allow some depen-
dence on the past. In many real-life situations this happens only through the previous state. This limited
amount of memory will still suffice to produce great diversity of behaviors.

Example 2.0.2 (Gambler’s ruin again). Consider a gambling game in which on any turn you win $1
with probability p or lose $1 with probability 1 − p. Let Xn be the amount of money you have after
n plays. The sequence {Xn}n≥0 is a discrete-time stochastic process and, intuitively, given the current
state Xn, any other information about the past is irrelevant for predicting the next state Xn+1:

P(Xn+1 = i+ 1|Xn = i,Xn−1 = in−1, . . . , X0 = i0) = p = P(Xn+1 = i+ 1|Xn = i),

for any i, in−1, . . . , i0. We will formally check this in Example 2.0.7.

The main reason for Markov to introduce the nowadays called Markov chains was to show that
the requirement of independence in the SLLN could be relaxed. But he immediately noticed the great
modelling power of Markov chains: they appeared to give an excellent description of the alternation of
vowels and consonants and enabled him to calculate a very accurate estimate of the frequency at which
consonants occur in Pushkin’s poem Eugene Onegin1.

Nowadays Markov chains are used in biology, social sciences, physics, computer science, operations
research, etc. They are arguably the most successful class of stochastic processes as they are simple to
describe but nevertheless can exhibit extremely varied and complex behaviors.

1https://www.americanscientist.org/article/first-links-in-the-markov-chain.
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A discrete-time Markov chain is a stochastic process which is the simplest generalization of a sequence
of independent random variables: the dependency of successive events goes back only one unit in time.
In other words, the future probabilistic behavior of the process depends only on the present state of the
process and is not influenced by its past history. The formal definition goes as follows:

Definition 2.0.3. A discrete-time stochastic process {Xn}n≥0 with state space E is a discrete-time
Markov chain if it satsfies the following Markov property: for each n = 0, 1, . . .

P(Xn+1 = j|Xn = i,Xn−1 = in−1, . . . , X0 = i0) = P(Xn+1 = j|Xn = i),

for all j, i, in−1, . . . , i0 ∈ E.
The Markov chain is temporally homogeneous if there exist constants p(i, j) such that

P(Xn+1 = j|Xn = i) = p(i, j)

holds for all n i.e., it is independent of the time parameter n.
The probabilities p(i, j) are called one-step transition probabilities and the matrix P whose (i, j)

entry is p(i, j) is called the transition matrix.

Remark 2.0.4. You can remember the Markov property as “given the current state Xn, any other infor-
mation about the past is irrelevant for predicting Xn+1”.

The transition probabilities tell us how the process evolves. The laws of nature do not change with
time, so if our Markov chain describes a physical process, and if the environment is not changing either,
we would expect the process to evolve in the same way, regardless of what time the clock reads. In
other words, we would expect the chain to be temporally homogeneous and that is indeed what we will
assume from now on.

Remark 2.0.5. Notice that E might be infinite and so a transition matrix is not in general of the kind
studied in linear algebra. However, the basic operations of addition and multiplication will be defined
by the same formal rules. For instance, if A = (aij)i,j∈E and B = (bij)i,j∈E , the product C = AB is the
matrix (cij)i,j∈E with cij =

∑
k∈E aikbkj .

Exercise 2.0.6. Show that a sequence {Xn}n≥0 of independent discrete random variables satisfies the
Markov property.

Notice that, for fixed i, f(j) = p(i, j) = P(Xn+1 = j|Xn = i) is the conditional pmf of Xn+1 given
Xn = i and so it inherits all the properties of a conditional pmf (see Section 1.7). In particular,

p(i, j) ≥ 0 for all i, j ∈ E (2.1)

and ∑
j∈E

p(i, j) = 1 for each i ∈ E. (2.2)

(2.2) amounts to say that all row sums in the transition matrix P are equal to 1. A matrix with non-
negative entries and such that all row sums are 1 is called stochastic. Hence the transition matrix of a
Markov chain is a stochastic matrix.

A convenient way of representing a Markov chain is via a weighted directed graph, called the transi-
tion graph, whose nodes are the states in E, and for which there is a directed edge from i ∈ E to j ∈ E
with weight p(i, j) whenever this quantity is positive. Note that there may be “loops”, corresponding to
states i such that p(i, i) > 0.
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Example 2.0.7 (Random walk on Z). Suppose Y1, Y2, . . . are i.i.d. integer-valued random variables.
Let X0 = 0 and, for each n ≥ 1, let Xn =

∑n
m=1 Ym. The stochastic process {Xn}n≥0 is called ran-

dom walk on Z. You can think of a random walk as representing a quantity that changes over time
(e.g., a stock price) such that its increments Yi’s are i.i.d. Let’s verify it is a Markov chain. For all
j, i, in−1, . . . , i0 ∈ E, we have

P(Xn+1 = j|Xn = i,Xn−1 = in−1, . . . , X0 = i0)

= P(Xn + Yn+1 = j|Xn = i,Xn−1 = in−1, . . . , X0 = i0)

= P(Yn+1 = j − i|Xn = i,Xn−1 = in−1, . . . , X0 = i0)

= P(Yn+1 = j − i|Y1 + · · ·+ Yn = i, Y1 + · · ·+ Yn−1 = in−1, . . . , X0 = i0)

= P(Yn+1 = j − i)

where in the last equality we used Example 1.9.5. The same computation gives P(Xn+1 = j|Xn = i) =
P(Yn+1 = j−i) and so the Markov property holds. Moreover, since the Yi’s are identically distributed, we
have that, for each n ≥ 0, P(Yn+1 = j − i) = P(Y1 = j − i) and so the chain is temporally homogeneous
with transition probabilities p(i, j) = P(Y1 = j − i).

An interesting special case is when the increments Yi’s are Bernoulli random variables taking values
1 or −1 with P(Yi = 1) = p and P (Yi = −1) = q (hence p + q = 1). In this case the chain {Xn}n≥0 is
called simple random walk on Z. Its transition probabilities, for each i, are

p(i, i+ 1) = p, p(i, i− 1) = q, p(i, j) = 0 for j /∈ {i+ 1, i− 1}.

Notice that the gambler’s ruin problem can be formulated as a simple random walk on Z. The transition
graph is as follows:

p p p p

q q q qi i+ 1i− 1 i+ 2i− 2

Figure 2.1: Transition graph of the simple random walk on Z. Notice there are infinitely many states.

Example 2.0.8 (Ehrenfest chain). We have two urns A and B in which there are a total of N balls.
We pick one of the N balls at random and move it to the other urn. Let Xn be the number of balls in A
after the n-th draw. {Xn}n≥0 has the Markov property. Indeed,

P(Xn+1 = i+ 1|Xn = i,Xn−1 = in−1, . . . , X0 = i0) =
N − i
N

= P(Xn+1 = i+ 1|Xn = i)

and
P(Xn+1 = i− 1|Xn = i,Xn−1 = in−1, . . . , X0 = i0) =

i

N
= P(Xn+1 = i− 1|Xn = i).

Moreover, if |j − i| ≥ 2, then

P(Xn+1 = j|Xn = i,Xn−1 = in−1, . . . , X0 = i0) = 0 = P(Xn+1 = j|Xn = i).

The state space is clearly {1, . . . , N} and the chain is temporally homogeneous.

Exercise 2.0.9. State the transition matrix and draw the transition graph for the Ehrenfest chain with
N = 4.
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Let {Xn}n≥0 be a Markov chain with state space E. Every Xi, being a random variable, has a pmf,
also called distribution (not to be confused with the notion of distribution function in Section 1.4). We
can view this pmf as the row vector whose j-th component is P(Xi = j). Obviously,

∑
j∈E P(Xi = j) = 1

and any vector whose entries are nonnegative numbers adding to is 1 is called a distribution vector.
In the previous example we started with a verbal description of the chain and figured out what the

entries of its transition matrix are. However, we can describe a Markov chain by directly providing a
legitimate transition matrix. Any matrix satisfying (2.1) and (2.2) gives rise to a Markov chain. This is
the content of the next theorem whose proof we omit.

Theorem 2.0.10 (Existence of Markov chains). Let P be a stochastic matrix and α a distribution vector.
Then there exists on some probability space a sequence of random variables X0, X1, . . . which is a Markov
chain with transition matrix P and initial distribution α.

Example 2.0.11 (Social mobility). Let Xn be a family’s social class in the n-th generation, which we
assume is either 1 = lower, 2 = middle, or 3 = upper. In this simple version of sociology, changes of
status are a Markov chain with transition matrix

P =

Ñ
.7 .2 .1
.3 .5 .2
.2 .4 .4

é
.

For example, we have the following one-step transition probabilities: P(X1 = 1|X0 = 2) = p(2, 1) = .3
and P(X1 = 3|X0 = 3) = p(3, 3) = .4.

.2 .4

.3 .2

.1

.2

.7 .4

.5

1 3

2

Figure 2.2: Transition graph of the social mobility Markov chain.

Given that your parents are middle class, what is the probability that you are upper class but your
children are lower class? This probability is nothing but P(X2 = 1, X1 = 3|X0 = 2). Intuitively, this is
the probability that, starting in 2, we first jump to 3 and then from 3 we jump to 1. We would expect it
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to be p(2, 3)p(3, 1). Let’s verify it:

P(X2 = 1, X1 = 3|X0 = 2) =
P(X2 = 1, X1 = 3, X0 = 2)

P(X0 = 2)

=
P(X2 = 1, X1 = 3, X0 = 2)

P(X0 = 2, X1 = 3)
· P(X1 = 3, X0 = 2)

P(X0 = 2)

= P(X2 = 1|X1 = 3, X0 = 2) · P(X1 = 3|X0 = 2)

= P(X2 = 1|X1 = 3)P(X1 = 3|X0 = 2)

= p(3, 1)p(2, 3),

where we have used the Markov property in the fourth equality. Loosely speaking, the probability of
traversing the path 2, 1, 3 in the transition graph can be computed by multiplying the probabilities on
the edges.

What is the probability that your children are lower class given that your parents are middle class?
This is just P(X2 = 1|X0 = 2). Now, if at time 0 we start in state 2 and at time 2 we end up in state
1, then we might have done this by being in either of the states 1, 2, 3 at time 1. These are obviously
disjoint events and so, since conditional probability is a probability measure, we can use finite additivity
to obtain

P(X2 = 1|X0 = 2) =
3∑

k=1

P(X2 = 1, X1 = k|X0 = 2) =
3∑

k=1

p(2, k)p(k, 1).

But the last sum should remind the reader matrix multiplication:Ñ
· · ·

p(2, 1) p(2, 2) p(2, 3)
· · ·

éÑ
p(1, 1) · ·
p(2, 1) · ·
p(3, 1) · ·

é
So it seems that the probability that, starting in state i, we end up in state j after two steps is the (i, j)
entry of P2. We will shortly prove and generalize this.

The following instructive exercise generalizes the first question in Example 2.0.11:

Exercise 2.0.12. Show by induction on n that, for each n ≥ 1,

P(Xn = in, . . . , X1 = i1|X0 = i0) = p(i0, i1)p(i1, i2) · · · p(in−1, in). (2.3)

The message of eq. (2.3) is that we can think in terms of the transition graph:

The probability that the Markov chain, starting in i0, traverses the path i0, i1, . . . , in is just the
product p(i0, i1)p(i1, i2) · · · p(in−1, in) of the transition probabilities. In other words, we can mul-
tiply probabilities along paths in the transition graphs.

Thanks to eq. (2.3), we can then compute the joint pmf of X0, . . . , Xn simply as

P(X0 = i0, . . . , Xn = in) = P(X0 = i0) · p(i0, i1)p(i1, i2) · · · p(in−1, in).

Applying twice eq. (2.3), we obtain the following useful tower equality:

P(X1 = i1, . . . , Xm = im, Xm+1 = j1, . . . , Xm+n = jn|X0 = i0)

= [p(i0, i1)p(i1, i2) · · · p(im−1, im)] · [p(im, j1) · p(j1, j2) · · · p(jn−1, jn)]

= P(X1 = i1, . . . , Xm = im|X0 = i0) · P(X1 = j1, . . . , Xn = jn|X0 = im).
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Loosely speaking, the tower equality says that traversing a certain path consisting of m+n steps from i0
is like doing the first m steps from i0 to im and then doing the remaining n steps by starting afresh in im.

We can further generalize the tower equality as follows. Suppose I is a set of m-long sequences
(i1, . . . , im−1, j) of states, each with last state j, and J is a set of n-long sequences (j1, . . . , jn) of states.
Since E is countable, I and J are countable as well. Therefore, we can write the event {(X1, . . . , Xm) ∈
I} as a countable union of disjoint events of the form {X1 = i1, . . . , Xm−1 = im−1, Xm = j}. Similarly
for the event {(Xm+1, . . . , Xm+n) ∈ J} and their intersection. But then, using countable additivity and
the tower equality above, we obtain a generalized tower equality which will be useful later on:

P((X1, . . . , Xm) ∈ I, (Xm+1, . . . , Xm+n) ∈ J |X0 = i)

=
∑

(i1,...,im−1,j)∈I
(j1,...,jn)∈J

P(X1 = i1, . . . , Xm−1 = im−1, Xm = j,Xm+1 = j1, . . . , Xm+n = jn|X0 = i)

=
∑

(i1,...,im−1,j)∈I
(j1,...,jn)∈J

P(X1 = i1, . . . , Xm−1 = im−1, Xm = j|X0 = i) · P(X1 = j1, . . . , Xn = jn|X0 = j)

= P((X1, . . . , Xm) ∈ I|X0 = i) · P((X1, . . . , Xn) ∈ J |X0 = j).

The one-step transition probability p(i, j) = P(X1 = j|X0 = i) gives the probability of going from i to
j in one step. But what is the probability of going from i to j in n > 1 steps, namely P(Xn = j|X0 = i)?
We first observe that the assumption of temporal homogeneity for the one-step transition probabilities
also implies temporal homogeneity for the n-step transition probabilities. In other words, the probability
of going from i to j in n steps does not depend on the time at which we start our transition:

Lemma 2.0.13. Let {Xn}n≥0 be a Markov chain. Then P(Xm+n = j|Xm = i) = P(Xn = j|X0 = i).

Proof. We proceed by induction on n, the base case n = 1 just being temporal homogeneity in Defini-
tion 2.0.3. Therefore, suppose the statement holds for n. We show it holds for n + 1. We can write the
event {Xm+n+1 = j} as the countable disjoint union

⋃
k∈E{Xm+n+1 = j,Xm+n = k} and use countable

additivity of the conditional probability:

P(Xm+n+1 = j|Xm = i) =
∑
k∈E

P(Xm+n+1 = j,Xm+n = k|Xm = i).

We then simplify the terms of the series:

P(Xm+n+1 = j,Xm+n = k|Xm = i) =
P(Xm+n+1 = j,Xm+n = k,Xm = i)

P(Xm+n = k,Xm = i)
· P(Xm+n = k,Xm = i)

P(Xm = i)

= P(Xm+n+1 = j|Xm+n = k,Xm = i) · P(Xm+n = k|Xm = i)

= P(Xm+n+1 = j|Xm+n = k) · P(Xm+n = k|Xm = i)

= P(X1 = j|X0 = k) · P(Xn = k|X0 = i),

where in the third equality we used the Markov property and in the fourth the induction hypothesis.
Therefore,

P(Xm+n+1 = j|Xm = i) =
∑
k∈E

P(X1 = j|X0 = k) · P(Xn = k|X0 = i).

But the RHS is independent of m and so the equality holds for each m, in particular for m = 0:

P(Xm+n+1 = j|Xm = i) =
∑
k∈E

P(X1 = j|X0 = k) · P(Xn = k|X0 = i) = P(Xn+1 = j|X0 = i),

as desired.
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Lemma 2.0.13 implies the following time-invariance principle:

Conditional on the event {Xm = i}, the chain {Xm+n}n≥0 has the same distribution as the Markov
chain {Xn}n≥0 with initial state X0 = i. In other words, the Markov chain starts anew, or regen-
erates, at every determined time m.

We can finally find an expression for the n-step transition probabilities. It turns out that they are
completely determined by the one-step transition probabilities, as shown by the following result. We
denote by pn(i, j) the probability of going from i to j in n steps i.e., P(Xn = j|X0 = i).

Theorem 2.0.14 (Chapman-Kolmogorov equation). Let {Xn}n≥0 be a Markov chain with state space
E and transition matrix P. Then, for any m,n ≥ 0 and i, j ∈ E, we have

pm+n(i, j) =
∑
k∈E

pm(i, k)pn(k, j).

In particular,
pm+1(i, j) =

∑
k∈E

pm(i, k)p(k, j)

and pm(i, j) is the (i, j) entry of Pm.

Proof. We begin by showing the first equation. We use the same idea as in Example 2.0.11. How can we
go from state i to state j in m+ n steps? Well, we can first go in m steps to any of the possible states in
E. We can write the event {Xm+n = j} as the countable disjoint union

⋃
k∈E{Xm+n = j,Xm = k} and

use countable additivity of the conditional probability:

P(Xm+n = j|X0 = i) =
∑
k∈E

P(Xm+n = j,Xm = k|X0 = i).

But

P(Xm+n = j,Xm = k|X0 = i) =
P(Xm+n = j,Xm = k,X0 = i)

P(X0 = i)

=
P(Xm+n = j,Xm = k,X0 = i)

P(Xm = k,X0 = i)
· P(Xm = k,X0 = i)

P(X0 = i)

= P(Xm+n = j|Xm = k,X0 = i) · P(Xm = k|X0 = i)

= P(Xm+n = j|Xm = k) · P(Xm = k|X0 = i)

= P(Xn = j|X0 = k) · P(Xm = k|X0 = i)

= pn(k, j)pm(i, k),

where we used the Markov property in the fourth equality and Lemma 2.0.13 in the fifth equality. To
obtain the second equation, we simply let n = 1 in the first.

We finally show the last statement by induction. The case m = 1 holds by definition. Therefore,
suppose that pm(i, j) is the (i, j) entry of Pm. We show that pm+1(i, j) is the (i, j) entry of Pm+1. We
know that pm+1(i, j) =

∑
k∈E p

m(i, k)p(k, j) and, by the induction hypothesis, the terms of the form
pm(i, k) in the sum are the (i, k) entries of Pm and so the sum is nothing but the product of the i-th row
of Pm with the j-th column of P i.e., the (i, j) entry of Pm+1.

Remark 2.0.15. The Chapman-Kolmogorov equation simply asserts that the probability of going from i
to j in m + n steps is obtained by summing, over all possible states k, the probabilities of the mutually
exclusive events of going first from i to k in m steps and then going from k to j in n steps.
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Exercise 2.0.16. Let {Xn}n≥0 be a Markov chain with transition matrix P and let Yn = Xkn, for some
fixed k. Show that {Yn}n≥0 is a Markov chain and find its transition matrix.

How is the pmf of Xn related to the pmf of the initial random variable X0? By the Law of total
probability, we have

P(Xn = j) =
∑
i∈E

P(Xn = j|X0 = i)P(X0 = i).

But we have just seen that P(Xn = j|X0 = i) is the (i, j) entry of Pn and so the equation above tells us
that we can obtain the distribution vector of Xn simply by multiplying the distribution vector of X0 (i.e.,
the initial distribution), with the n-th power Pn of the transition matrix P.

Example 2.0.17 (Two-state Markov chain). Arguably the easiest possible chain has two states and is
defined via the following stochastic matrix P, where 0 < p, q < 1:

P =

Å
1− p p
q 1− q

ã
How do we compute Pn? Recall that a square matrix A is diagonalizable if there exist a diagonal

matrix D and an invertible matrix Q such that A = QDQ−1. It is easy to compute the power of a
diagonalizable matrix. Indeed, An = (QDQ−1)(QDQ−1) · · · (QDQ−1) = QDnQ−1 and Dn is simply
the diagonal matrix whose (i, i) entry is the n-th power of the (i, i) entry of D. We recall the following
characterization of diagonalizable matrices:

Theorem 2.0.18. An n × n matrix A is diagonalizable if and only if A has n linearly independent eigen-
vectors. In this case, A = QDQ−1, where the columns of Q are the right eigenvectors of A and the (i, i)
entry of D is the eigenvalue corresponding to the eigenvector in the i-th column of Q.

We now apply this result to our transition matrix P. We first need to find its eigenvalues and
eigenvectors. The eigenvalues are the zeros of its characteristic polynomial, namely the solutions of
det(P− λI) = λ2 + λ(p+ q − 2) + 1− q − p = 0. The two eigenvalues are λ1 = 1 and λ2 = 1− p− q. To
find the corresponding eigenvectors we simply have to solve the systems Pv = λiv for i = 1, 2. We get
that the eigenvector corresponding to λ1 is the column vector (1, 1)t and the eigenvector corresponding
to λ2 is the column vector (−p, q)t. As they are clearly linearly independent, P is diagonalizable and

Pn =

Å
1 −p
1 q

ãÅ
1n 0
0 (1− p− q)n

ãÇ q
p+q

p
p+q

−1
p+q

1
p+q

å
=

1

p+ q

Å
q + p(1− p− q)n p(1− (1− p− q)n)
q(1− (1− p− q)n) p+ q(1− p− q)n

ã
.

2.1 Classification of states

We now want to study the nature of the different states. How does the Markov chain evolve over time?
Depending on its transition probabilities, a Markov chain may visit some states infinitely often and
visit other states only a finite number of times over the infinite time horizon. Also, if a state is visited
infinitely often, the mean time between visits may be infinite or finite. We will obtain a classification of
states according to these properties.

For any event A, we denote by Pi(A) the conditional probability P(A|X0 = i). For example, using
this notation, the Chapman-Kolmogorov equation says that Pi(Xn = j) = pn(i, j) is the (i, j) entry of
Pn.

Definition 2.1.1. A state i ∈ E is recurrent if Pi(Xn = i for some n ≥ 1) = 1 and transient otherwise.
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In words, a state i is recurrent if the chain will return to i after finitely many steps almost surely i.e.,
with probability 1.

Example 2.1.2. Consider the following transition matrix of a Markov chain with state space E =
{0, 1, 2, 3, 4}:à

1 0 0 0 0
.6 0 .4 0 0
0 .6 0 .4 0
0 0 .6 0 .4
0 0 0 0 1

í
.

1
0

4

2 3

1

1

.4

.6

.4
.6

.6

.4

Figure 2.3: Transition graph.

Let’s try to classify the states into transient and recurrent. State 0 is obviously recurrent as P0(Xn =
0 for some n ≥ 1) ≥ P0(X1 = 0) = p(0, 0) = 1. Similarly, 4 is recurrent. We claim that state 1 is transient.
Indeed, the event of not returning to 1 contains the event of going from 1 to 0 and then staying in 0. This
event happens with probability p(1, 0) · p(0, 0) = 0.6 > 0. Therefore, P1(Xn = 1 for some n ≥ 1) < 1.
Similarly, the event of not returning to 2 contains the event of going from 2 to 1, then from 1 to 0 and
then staying in 0. This event happens with probability p(2, 1) · p(1, 0) · p(0, 0) = 0.62 > 0. Therefore, 2 is
transient. The same reasoning applies to 3.

Exercise 2.1.3. Consider the Markov chain with state space E = {1, 2, 3} and transition matrix

P =

Ñ
.1 .2 .7
.3 .4 .3
.5 .4 .1

é
.

The initial distribution is P(X0 = 1) = .6, P(X0 = 2) = .3,P(X0 = 3) = .1.

(i) Find the distribution of X1.

(ii) Compute P(X1 = 1, X2 = 2, X3 = 3|X0 = 1).

(iii) Compute P(X1 = 1, X2 = 2).

Exercise 2.1.4. Classify the states of the Markov chain with state space E = {1, 2, 3, 4, 5} and transition
matrix
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P =

à
.4 .3 .3 0 0
0 .5 0 .5 0
.5 0 .5 0 0
0 .5 0 .5 0
0 .3 0 .3 .4

í
.

For n ≥ 1, let f (n)
i,j be the probability that the first visit to state j from state i occurs at time n i.e.,

f
(n)
i,j = Pi(X1 6= j, . . . , Xn−1 6= j,Xn = j).

Such an n is called first-passage time. Moreover, let fi,j be the probability that the chain ever visits
state j starting in i. By countable additivity, we have

fi,j =

∞∑
n=1

f
(n)
i,j .

Notice that, by definition, fi,i = Pi(Xn = i for some n ≥ 1) and so a state i is recurrent if fi,i = 1, or
transient if fi,i < 1.

Remark 2.1.5. fi,j should not be mistaken with the transition probability p(i, j). We have that p(i, j) ≤
fi,j and in general the inequality is strict.

Example 2.1.6. Consider the Markov chain whose state space is the set of positive integers {1, 2, . . . }
and whose transition matrix is the infinite matrix

P =

â
1/2 1/2
1/3 2/3
1/4 3/4
1/5 4/5

...
. . .

ì
.

In other words, p(k, 1) = 1
k+1 and p(k, k + 1) = k

k+1 , for each k ≥ 1, and all the other transition
probabilities are 0. The transition graph looks as follows:

1/2 2/3 3/4 4/5

3 42 51
1/3

1/4
1/5

1/6

1/2

Figure 2.4: Transition graph.

Let’s compute f (n)
1,1 , the probability that the first return to 1 occurs at time n. Clearly, f (1)

1,1 = 1/2.
In general, we observe that the desired probability is nothing but the probability of traversing the path
1, 2, 3, . . . , n, 1 on the transition graph. But we know such a probability is

p(1, 2)p(2, 3)p(3, 4) · · · p(n− 1, n)p(n, 1) =
1

2
· 2

3
· 3

4
· · · n− 1

n
· 1

n+ 1
=

1

n
· 1

n+ 1
.
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Moreover,

f1,1 =
∞∑
n=1

1

n
· 1

n+ 1
=
∞∑
n=1

Å
1

n
− 1

n+ 1

ã
= 1,

and so 1 is recurrent. An arguably easier way of reaching the same conclusion is to consider the proba-
bility of the event {Xn = 1 for no n ≥ 1}. By continuity of probability, this is just limn→∞ 1/n = 0.

Example 2.1.7. Consider the Markov chain with state space E = {1, 2, 3, 4, 5} and transition matrix

P =

à
0 1 0 0 0
0 0 1 0 0
1 0 0 0 0
0 1/6 0 1/3 1/2
0 0 0 0 1

í
.

(i) Compute f1,1, f4,4, f5,5, f4,3.

(ii) Classify the states.

4 52

3

1

1

1

1

1/6

1/3

1/2
1

Figure 2.5: Transition graph.

Clearly, f5,5 = 1 as the chain, starting in 5, will be back after one step with probability 1. Therefore, 5
is recurrent. Consider now 1. The event that the chain ever visits 1 again contains the event of traversing
the path 1, 2, 3, 1 and the latter has probability p(1, 2) · p(2, 3) · p(3, 1) = 1. Therefore, f1,1 = 1 i.e., 1
is recurrent. Similarly, f2,2 = f3,3 = 1 and 2 and 3 are recurrent as well. Consider now 4. The chain,
starting in 4, visits 4 again if and only if it visits it after one step and so f4,4 = p(4, 4) = 1/3 i.e., 4 is
transient. Let’s now compute f4,3 =

∑∞
n=1 f

(n)
4,3 . For n ≥ 2, the probability f (n)

4,3 that the first visit to 3
from 4 occurs at time n is the probability that the chain stays in 4 until time n− 2, then moves to 2 and
then to 3. The probability of this event is (1/3)n−2 · 1/6 · 1. Therefore,

f4,3 =
∞∑
n=2

f
(n)
4,3 =

Å
1

3

ãn−2

· 1

6
=

1

4
.

The goal now is to show that the recurrent or transient nature of a certain state depends on the
number of visits the Markov chain makes to that state: A state j turns out to be recurrent if and only if
the chain, starting in j, returns infinitely often almost surely i.e., with probability 1. Our characterization
of recurrence and transience will involve the series

∑∞
n=1 p

n(j, j) of the n-step transition probabilities as
well and we will see the significance of this.

We begin by computing the probability that, starting in i, the chain makes at least k visits to j:
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Proposition 2.1.8. Let i, j ∈ E be states. Then

Pi(at least k visits to j) = fi,j · (fj,j)k−1.

Proof. We show the result for k = 2. The proof of the case k > 2 follows the same line. We begin by
computing Pi(first two visits at times n1, n2), namely the probability that, starting in i, the first two visits
to state j occur at at times n1 and n2 (where n1 < n2):

Pi(first two visits at times n1, n2)

= Pi(X1 6= j, . . . , Xn1−1 6= j,Xn1 = j,Xn1+1 6= j, . . . , Xn2−1 6= j,Xn2 = j)

= Pi(X1 6= j, . . . , Xn1−1 6= j,Xn1 = j) · Pj(X1 6= j, . . . , Xn2−n1−1 6= j,Xn2−n1 = j)

= f
(n1)
i,j · f

(n2−n1)
j,j ,

where we used the generalized tower equality in the second equality. But then

Pi(at least two visits to j) =
∑
n1<n2

Pi(first two visits at times n1, n2)

=
∞∑

n1=1

∞∑
n2=n1

f
(n1)
i,j · f

(n2−n1)
j,j

= fi,j · fj,j ,

as desired.

The previous result already tells us something meaningful:

What happens when k → ∞? Suppose first i = j. Then the probability that the chain visits i at
least k times tends to 0 if i is transient (as fi,i < 1), and to 1 if i is recurrent (as fi,i = 1).
Suppose now i 6= j. If j is transient, the probability that the chain visits j at least k times tends
to 0, independently on the nature of i. On the other hand, if j is recurrent, then the probability is
fi,j , namely the probability that the chain ever visits j.

We now find a different expression for the n-step transition probabilities by a so-called first-passage
decomposition: every path going from i to j in n steps visits j for the first time in m steps (1 ≤ m ≤ n)
and then comes back to j in the remaining n−m steps.

Lemma 2.1.9 (First-passage decomposition). For any states i and j, we have

pn(i, j) =

n∑
m=1

f
(m)
i,j · p

n−m(j, j).

Proof. We follow the idea mentioned above:

Pi(Xn = j) =
n∑

m=1

Pi(X1 6= j, . . . , Xm−1 6= j,Xm = j,Xn = j)

=

n∑
m=1

Pi(X1 6= j, . . . , Xm−1 6= j,Xm = j) · Pj(Xn−m = j)

=
n∑

m=1

f
(m)
i,j · p

n−m(j, j),

where in the first equality we used finite additivity and in the second equality we used the generalized
tower equality.
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The following technical result will be used to discriminate the behavior of
∑∞

n=1 p
n(i, i) according to

whether i is recurrent or transient.

Lemma 2.1.10. For any states i and j, we have

N∑
n=1

pn(i, j) ≤ fi,j
N∑
n=0

pn(j, j).

Proof. By the first-passage decomposition,

pn(i, j) =
n∑

m=1

f
(m)
i,j · p

n−m(j, j).

But then the partial sums of the n-step transition probabilities can be rewritten as

N∑
n=1

pn(i, j) =

N∑
n=1

n∑
m=1

f
(m)
i,j · p

n−m(j, j) =

N∑
m=1

N∑
n=m

f
(m)
i,j · p

n−m(j, j) =

N∑
m=1

f
(m)
i,j

N∑
n=m

pn−m(j, j)

≤
N∑
m=1

f
(m)
i,j

N∑
n=0

pn(j, j)

=

Å N∑
n=0

pn(j, j)

ãÅ N∑
m=1

f
(m)
i,j

ã
≤ fi,j

N∑
n=0

pn(j, j),

where in the third equality we exchanged the order of summation and the last inequality follows from
the definition of fi,j .

We can finally characterize recurrent states:

Theorem 2.1.11. For any state i ∈ E, the following are equivalent:

1. i is recurrent;

2.
∑∞

n=1 p
n(i, i) =∞;

3. Pi(Xn = i i.o.) = 1.

Proof. 3 =⇒ 2 : If it were
∑∞

n=1 Pi(Xn = i) < ∞, then the first Borel-Cantelli lemma would imply that
Pi(Xn = i i.o.) = 0.
3⇐⇒ 1 : Letting i = j in Proposition 2.1.8, we obtain

Pi(at least k visits to i) = fi,i · (fi,i)k−1 = (fi,i)
k.

Continuity of probability then implies that

Pi(Xn = i i.o.) = Pi(
⋂
k

{at least k visits to i}) = lim
k→∞

Pi(at least k visits to i) =

®
1 if fi,i = 1;

0 if fi,i < 1.
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2 =⇒ 3 : Thanks to the previous paragraph, it is enough to show that, if
∑∞

n=1 p
n(i, i) =∞, then fi,i = 1.

Therefore, suppose the series diverges. By Lemma 2.1.10,

N∑
n=1

pn(i, i) ≤ fi,i
N∑
n=0

pn(i, i).

But p0(i, i) = 1 and so we obtain

(1− fi,i)
N∑
n=1

pn(i, i) ≤ fi,i,

which implies that fi,i = 1, or else
∑∞

n=1 p
n(i, i) would converge by the monotone convergence theorem,

thus contradicting our assumption. Indeed, the sequence of partial sums
∑N

n=1 p
n(i, i) is increasing and

would be upper bounded by fi,i
1−fi,i .

Using Theorem 2.1.11, we can immediately characterize transient states:

Theorem 2.1.12. For any state i ∈ E, the following are equivalent:

1. i is transient;

2.
∑∞

n=1 p
n(i, i) <∞;

3. Pi(Xn = i i.o.) = 0.

Proof. 1 =⇒ 2 : If
∑∞

n=1 p
n(i, i) were divergent, then i would be recurrent by Theorem 2.1.11.

2 =⇒ 3 : This is just the first Borel-Cantelli lemma applied to the probability measure Pi(·).
3 =⇒ 1 : If i were recurrent, then Theorem 2.1.11 implies that Pi(Xn = i i.o.) = 1.

Remark 2.1.13. Theorem 2.1.11 and Theorem 2.1.12 give another example of a zero-one law: The
probability of a certain event (in our case {Xn = i i.o.}) must be either 0 or 1 and cannot take any
intermediate value. Notice that, as opposed to the independence assumption is the second Borel-Cantelli
lemma, we do not require the events {Xn = i} to be independent!

Corollary 2.1.14. If j is transient, then limn→∞ p
n(i, j) = 0, for each i.

Proof. Fix an arbitrary i. Since j is transient, we know that
∑∞

n=1 p
n(j, j) converges. On the other hand,

by Lemma 2.1.10,
N∑
n=1

pn(i, j) ≤ fi,j
N∑
n=0

pn(j, j),

and so
∑∞

n=1 p
n(i, j) converges as well by the comparison test. But then the divergence test implies that

limn→∞ p
n(i, j) = 0.

We have just seen that the recurrent or transient nature of a state j depends on the number of visits
the Markov chain makes to j. We could denote this number by Nj . This random number might be
infinite and so Nj would not be a random variable of the type we have defined in Section 1.4. Although
the following steps could be formally justified, it will be enough for us to just use them as an intuitive
guidance. We write Nj as a sum of indicator random variables Nj =

∑∞
n=0 I{Xn=j}. We would then

expect the following equality for the conditional mean value of Nj:

E(Nj |X0 = i) =
∞∑
n=0

pn(i, j).
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In other words, we can interpret
∑∞

n=0 p
n(i, j) as the conditional mean number of visits that the chain

makes to j. Consider for example a transient state j. We know that fj,j < 1 and so, as seen in the
proof of Theorem 2.1.11, the sequence

∑N
n=1 p

n(j, j) of the partial sums is upper bounded by fj,j
1−fj,j and

hence
∑N

n=0 p
n(j, j) is upper bounded by 1

1−fj,j . Therefore, if j is transient, it seems Nj behaves like a
geometric random variable with parameter 1− fj,j , which indeed could be formally proved.

Exercise 2.1.15. The rooted binary tree is an infinite graph T with one distinguished vertex r from which
comes a single edge; at every other vertex there are exactly three edges as depicted in Figure 2.6. For any
vertex v of T , let d(r, v) denote the distance between r and v i.e., the length of a shortest path on T between
v and r. A flea, starting in r, jumps on T from a vertex along each available edge with equal probability.
Let Xn be the random vertex it occupies at time n and Yn = d(Xn, r).

r

Figure 2.6: Rooted binary tree.

1. Show that {Yn}n≥0 is a Markov chain with state space {0, 1, 2, . . . }.

2. Is the state 0 transient or recurrent?

3. What does the previous point imply for the flea?

Example 2.1.16. Consider the simple random walk on Z of Example 2.0.7. We classify the states using
the characterizations just obtained. For each state y, we look at

∑∞
n=1 p

n(y, y). If the series is divergent,
then y is recurrent, otherwise it is transient. We first need to compute the n-step transition probabilities
pn(y, y). We can represent the walk as in Figure 2.7. Clearly, we can be back at y only after an even
number of steps, where each step is represented by an “up” or “down” movement in Figure 2.7: Indeed,
we need the same number of steps “up” and steps “down”. This means that each path of length 2n
starting in y and returning to y occurs with probability pnqn (thanks to Exercise 2.0.12). But there are(2n
n

)
such paths (the number of choices of the times at which the n steps “up” occur). Therefore,

∞∑
n=1

pn(y, y) =

∞∑
n=1

Ç
2n

n

å
pnqn.

To evaluate the series, we use the following estimation of the factorial:

Theorem 2.1.17 (Stirling formula).

n! ∼
√

2πn

Å
n

e

ãn
as n→∞,

where an ∼ bn means that an/bn → 1. In words, an and bn behave the same way for large n.



CHAPTER 2. MARKOV CHAINS 65

Plugging in and simplifying, we get that the series

∞∑
n=1

Ç
2n

n

å
pnqn

behaves like the series √
π

π

∞∑
n=1

1√
n

(4pq)n.

If p = q = 1/2, the latter becomes √
π

π

∞∑
n=1

1√
n
,

which is divergent (it is a p-series with p = 1/2 ≤ 1). On the other hand, if p 6= q, then 4pq < 1. Since

1√
n

(4pq)n ≤ (4pq)n

and since the geometric series
∑∞

n=1(4pq)n converges, the comparison test implies that the series

∞∑
n=1

1√
n

(4pq)n

converges as well.

state

time
0

1

2

-1

-2

1 2 3 4 5 6 7 8 9

Figure 2.7: Example of evolution of the walk. At time 0 we are in state 0.

The computations above clearly hold for any state y and so we have obtained the following:

In a simple random walk on Z, all states are recurrent if p = q, whereas they are all transient if
p 6= q. Therefore, in the case p = q, each integer is visited infinitely often almost surely, whereas
in the case p 6= q, with positive probability the walk will never return to its starting point.

In the previous example we noticed that all states behaved the same way. As we will see, the reason
is that they all communicate. This notion is defined as follows:
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Definition 2.1.18. State j is accessible from state i, denoted by i → j, if pn(i, j) > 0 for some n ≥ 0.
States i and j communicate, denoted by i↔ j, if i→ j and j → i.

Accessibility can be easily spotted in the transition graph: i→ j if and only if there exists a directed
path from i to j.

Lemma 2.1.19. The communication relation↔ is an equivalence relation on E.

Proof. Reflexivity (i ↔ i) and symmetry (i ↔ j if and only if j ↔ i) are obvious. We show transitivity,
namely that if i↔ j and j ↔ k, then i↔ k. Since i→ j and j → k, there exist n1 ≥ 0 and n2 ≥ 0 such
that pn1(i, j) > 0 and pn2(j, k) > 0. But then the Chapman-Kolmogorov equation implies that

pn1+n2(i, k) =
∑
`∈E

pn1(i, `)pn2(`, k) ≥ pn1(i, j)pn2(j, k) > 0.

This shows that i→ k and similarly we can show that k → i.

Since the communication relation is an equivalence relation, we can partition the state space E into
equivalence classes under this relation, called communication classes. By definition of equivalence
class, it might be possible to move from one class to another, but if that happens, it is then impossible
to return. There are however certain sets of states from which it is impossible to get out; think about
{1, 2, 3} and {5} in Example 2.1.7. These type of sets are called closed, as defined in the following:

Definition 2.1.20. A set of states C ⊆ E is closed if no state outside C is accessible from any state in
C. A state i is absorbing if {i} is a closed set.

Trivially, the state space E is closed.

Remark 2.1.21. A set C is closed if i ∈ C and j /∈ C implies that pn(i, j) = 0 for all n ≥ 0: it is impossible
to get out of C. Indeed, for any i ∈ C, we have

Pi(leaving C) = Pi(
⋃
j /∈C

∞⋃
n=0

{Xn = j}) ≤
∑
j /∈C

Pi(
∞⋃
n=0

{Xn = j}) ≤
∑
j /∈C

∞∑
n=0

Pi(Xn = j) = 0.

Notice that a state i is absorbing if and only if p(i, i) = 1. Absorbing states are then a special type of
recurrent states: once the chain enters one of them, it will stay in that state almost surely.

A closed set may contain several communication classes. It is in fact a union of communication
classes:

Exercise 2.1.22. Show that every closed set is a union of communication classes.

As mentioned, chains in which any two states communicate i.e., there is only one communication
class, are particularly well-behaved.

Definition 2.1.23. Let C be a set of states. C is irreducible if i ↔ j for any i, j ∈ C. C is recurrent
or transient if all of its states are recurrent or transient, respectively. A Markov chain is irreducible
(recurrent, transient) if its state space is irreducible (recurrent, transient).

Example 2.1.24. Each communication class is obviously irreducible. In fact, the communication class
containing i is the maximal (under inclusion) irreducible set containing i.

Example 2.1.25. The Ehrenfest chain, the social mobility chain and the simple random walk on Z are
all irreducible.
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Example 2.1.26. Consider the Markov chain whose transition graph is depicted in Figure 2.8. Recall
that in the transition graph we draw only the directed edges corresponding to non-zero one-step transi-
tion probabilities.

It is very easy to determine communication classes. To find the communication class a vertex i
belongs to, simply look for the vertices j reachable from i by a directed path. j then belongs to the
communication class of i iff there is a directed path from j to i. Repeating this procedure, we find all
communication classes. In graph-theoretic language, these are the strongly connected components of
the transition graph.

5 3 7

1
2 4

6

1

1 .2

.2 .6

.7

.3

1

1

1

Figure 2.8: Transition graph.

In our example, the communication classes are {1, 5}, {2}, {3}, {4, 6, 7}. What are some examples of
closed sets? Well, no state outside {1, 5} is accessible from it, so {1, 5} is closed. Similarly, {4, 6, 7} is
closed. Is there a larger closed set containing {1, 5}? We know it must be a union of communication
classes and {1, 5, 3, 4, 6, 7} would work, but for example {1, 5, 3} would not. The chain is not irreducible,
as it contains more than one communication class.

Can we identify recurrent and transient states? Well, 2 must be transient, as the event of not visiting
2 again contains the event of going to 1 in one step and the latter has non-zero probability. Hence, the
probability of visiting 2 again is smaller than one. Similarly for 3. Consider now 1. It is easily seen that
f1,1 = 1 and so 1 is recurrent. This shouldn’t be surprising as 1 belongs to the closed communication
class {1, 5}, from which we cannot get out. We will soon prove this sort of behavior: a closed and finite
communication class is recurrent.

Exercise 2.1.27. For each of the chains in Examples 2.1.2, 2.1.6 and 2.1.7, determine the communication
classes, the communication classes which are closed and the absorbing states. Which chains are irreducible?

We now establish the major result that all states in an irreducible set are of the same type: either all
recurrent or all transient. As every communication class is irreducible, we will then say that recurrence
and transience are class properties. The theorem explains our observations in the previous examples.

Theorem 2.1.28. Let C be an irreducible set. Then exactly one of the following holds:

(i) C is recurrent,
∑

n p
n(i, j) =∞ for all i, j ∈ C, and Pj(Xn = i i.o. for all i ∈ C) = 1 for all j ∈ C.

(ii) C is transient,
∑

n p
n(i, j) <∞ for all i, j ∈ C, and Pj(Xn = i i.o. for some i ∈ C) = 0 for all j ∈ C.

Proof. The plan of the proof is as follows. We first suppose that C contains a recurrent state and show
how this implies that C is recurrent and that the other two properties in (i) are satisfied. If however no
state in C is recurrent, then C must be transient and we show that the other two properties in (ii) hold.

Therefore, suppose C contains a recurrent state i. By Theorem 2.1.11,
∑

n p
n(i, i) = ∞. Let now j

be an arbitrary state in C distinct from i. We show that j is recurrent as well. Since C is irreducible,
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i ↔ j, and so there exist n1 and n2 such that pn1(j, i) > 0 and pn2(i, j) > 0. For any n ≥ n1 + n2, a
double application of the Chapman-Kolmogorov equation gives

pn(j, j) =
∑
k∈E

pn1(j, k)pn−n1(k, j) =
∑
k∈E

pn1(j, k)
∑
`∈E

pn−n1−n2(k, `)pn2(`, j)

=
∑
k,`∈E

pn1(j, k)pn−n1−n2(k, `)pn2(`, j)

≥ pn1(j, i)pn−n1−n2(i, i)pn2(i, j),

where the inequality follows from the fact that the term in the RHS appears in the sum and each term
in the sum is nonnegative. But

∞∑
n=n1+n2

pn1(j, i)pn2(i, j)pn−n1−n2(i, i) = pn1(j, i)pn2(i, j)
∞∑

n=n1+n2

pn−n1−n2(i, i)

diverges and so the comparison test implies that
∑

n p
n(j, j) = ∞. Hence j is recurrent, as claimed.

Since j was arbitrary, C is recurrent.
We now show that

∑∞
n=1 p

n(i, j) =∞ for all i, j ∈ C. Therefore, let i, j ∈ C be arbitrary and choose
n1 such that pn1(i, j) > 0. For all n ≥ 1, the Chapman-Kolmogorov equation implies that

pn1+n(i, j) =
∑
k∈E

pn1(i, k)pn(k, j) ≥ pn1(i, j)pn(j, j).

Since
∑∞

n=1 p
n(j, j) diverges, the comparison test implies that

∑∞
n=1 p

n(i, j) diverges as well.
We finally show the last assertion in (i):

Pj(Xn = i i.o. for all i ∈ C) = Pj

( ⋂
i∈C
{Xn = i i.o.}

)
= 1.

For each n, we can upper bound the n-step transition probabilities as follows:

Pi(Xn = j) = Pi({Xn = j} ∩ {Xm = i i.o.})

≤
∑
m>n

Pi(Xn = j,Xn+1 6= i, . . . ,Xm−1 6= i,Xm = i)

=
∑
m>n

Pi(Xn = j) · Pj(X1 6= i, . . . ,Xm−n−1 6= i,Xm−n = i)

= pn(i, j) · fj,i,

where the first equality follows from Example 1.1.32 and the fact that Pi(Xm = i i.o.) = 1 (Theo-
rem 2.1.11), the inequality follows from the union bound, the second equality follows from the gener-
alized tower equality and the last one from the definition of fj,i. Take now n such that pn(i, j) > 0. We
just showed that pn(i, j) ≤ pn(i, j) · fj,i and so it must be fj,i = 1. By Proposition 2.1.8 and continuity of
probability, we have

Pj(Xn = i i.o.) = Pj

(⋂
k

{at least k visits to i}

)
= lim

k→∞
fj,i · (fi,i)k−1 = 1

and so, intersecting over all i ∈ C, we get Pj(Xn = i i.o. for all i ∈ C) = 1, thanks to Exercise 1.1.36.



CHAPTER 2. MARKOV CHAINS 69

It remains to consider the case of C not containing any recurrent state. Then C is transient by
definition. Let i, j ∈ C be arbitrary states. By Lemma 2.1.10,

N∑
n=1

pn(i, j) ≤ fi,j
N∑
n=0

pn(j, j).

Since whenN →∞, the RHS converges (as j is transient), the comparison test implies that
∑∞

n=1 p
n(i, j)

converges as well. Using this together with the first Borel-Cantelli lemma, we then obtain that Pi(Xn =
j i.o.) = 0 and unioning over all j ∈ C, we obtain Pi(Xn = j i.o. for some j ∈ C) = 0, thanks to
Exercise 1.1.36. This concludes the proof.

Example 2.1.29. Consider the Markov chain whose state space is the set of nonnegative integers
{0, 1, 2, . . . } and whose transition matrix is the infinite matrix

P =



1/2 1/22 1/23 1/24 · · ·
1 0

1 0
1 0

1
. . .
. . .


.

In other words, p(0, i) = 1/2i+1, for each i ∈ {0, 1, . . . }, and p(i, i − 1) = 1, for each i ∈ {1, 2, . . . }.
All the other transition probabilities are 0. It is easy to see from the transition graph that the chain is
irreducible. Notice also that, in order to check accessibility, the transition probabilities are irrelevant and
we can omit them from the transition graph.

2 31 40

Figure 2.9: Transition graph.

By the previous theorem the chain is then either transient or recurrent. To establish which of the
two holds, we simply look at the state 0 and compute f0,0, the probability that the chain ever visits 0

again. This is easily obtained by first computing f (n)
0,0 for each n (check it!). We provide another way of

computing f0,0. It should be intuitively clear that f0,0 = 1: starting in 0, no matter where we are at time
1, we will be back in 0 after finitely many steps. Formally, by the law of total probability,

f0,0 =
∞∑
i=0

P0(Xn = 0 for some n ≥ 1|X1 = i)P0(X1 = i) =
∞∑
i=0

1 · P0(X1 = i) = 1.

Therefore, the chain is recurrent.

It should be intuitively clear that a communication class need not be closed (check for example the
transient class in Example 2.1.2). However, the class is closed when it is recurrent.
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Lemma 2.1.30. A recurrent communication class is closed.

Proof. We show that if a communication class is not closed then it is transient. This would conclude the
proof. Therefore, suppose that C is a communication class which is not closed. Since C is not closed,
there exist j /∈ C and i ∈ C such that j is accessible from i i.e., Pi(Xm = j) > 0 for some m ≥ 0. But
since C is a communication class containing i and j /∈ C, i is not accessible from j. This implies that a
return to i is not possible if j is entered and so 1− fi,i ≥ Pi(Xm = j) > 0. Therefore, i is transient.

Exercise 2.1.31. Show that if i→ j and j is transient, then i is transient. Hint: Use Lemma 2.1.30

Exercise 2.1.32. Consider a Markov chain with finite state space. Show that j is transient iff there exists
k accessible from j but such that j is not accessible from k. Give a counterexample in the case the Markov
chain has infinite state space.

Exercise 2.1.33. Show that every Markov chain with finite state space has at least one closed communica-
tion class.

If the state space is finite, then we should expect not all the states to be transient, for otherwise after
a finite number of steps the chain would leave every state never to return but have nowhere to go. Our
intuition is confirmed by combining the following with Exercise 2.1.33.

Lemma 2.1.34. If C is a closed and finite communication class, then C is recurrent.

Proof. We use Theorem 2.1.28 and suppose, to the contrary, that C is transient. Then, for any i, j ∈ C
we have limn→∞ p

n(i, j) = 0 (Corollary 2.1.14). But since C is closed, we have 1 = Pi(Xn ∈ C) and so,
since C is finite we can take the limit:

1 = Pi(Xn ∈ C) =
∑
j∈C

pn(i, j)→ 0 as n→∞,

a contradiction.

Example 2.1.35. Lemma 2.1.34 immediately implies that the social mobility chain is recurrent.

Combining Lemma 2.1.30 and Lemma 2.1.34, we have that a finite communication class is re-
current if and only if it is closed. This gives the following easy procedure to classify the states
of a Markov chain with finite state space. We simply find the communication classes: the closed
classes are recurrent, the others are transient (check Example 2.1.26 again!).

Remark 2.1.36. Notice that the finiteness requirement is essential: we have seen that the simple random
walk on Z with p 6= q is irreducible and closed but transient.

Exercise 2.1.37. Classify the states of every Markov chain with finite state space introduced so far.

We now have all the ingredients to obtain a canonical decomposition of a Markov chain with state
space E. We can first partition E into communication classes; the classes are irreducible, but not nec-
essarily closed. Let now R1, R2, . . . denote the finite or infinite sequence of communication classes that
are recurrent, and hence closed by Lemma 2.1.30. Then we set T = E \

⋃
k Rk. By Theorem 2.1.28, T is

transient, as it consists of communication classes that are not recurrent. Notice that T is not necessarily
closed and that it may be empty or equal to E. We have therefore proved the following:
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Theorem 2.1.38 (Decomposition theorem for Markov chains). The state space E of a Markov chain
has the unique representation E = T ∪ (

⋃
k Rk), where T is the set of transient states and each Ri is a closed

irreducible recurrent set.

Here are some consequences of the Decomposition theorem:

• If the chain starts in a recurrent set Rk, then it moves within that set forever.

• If the chain starts in the transient set T , then it moves within T and either enters one of the
recurrent sets and remains in that set thereafter, or it remains in T forever, provided T is
infinite (a finite T cannot be closed by Lemma 2.1.34).

Exercise 2.1.39. Find the decomposition for the Markov chain with transition matrixÑ
1 0 0

1/3 0 2/3
1/4 1/4 1/2

é
.

2.2 Limiting and stationary distributions

In Markov chain models, we are often interested in the long-term state occupancy behavior i.e., in the
n-step transition probabilities pn(i, j) for large n. We might oversimplify and suppose, for example, that
a certain stock price is a Markov chain. Since transactions happen every second, we will be certainly
interested in the long-term distribution. We begin by recalling what happens in the case of the simplest
Markov chain.

Example 2.2.1. Consider again the two-state Markov chain defined via the following transition matrix
P, with 0 < p, q < 1:

P =

Å
1− p p
q 1− q

ã
.

Recall that

Pn =

Å
q + p(1− p− q)n p(1− (1− p− q)n)
q(1− (1− p− q)n) p+ q(1− p− q)n

ã
.

Since |1− p− q| < 1,

lim
n→∞

Pn =

Ç
q
p+q

p
p+q

q
p+q

q
p+q

å
.

So the limit matrix exists and its rows are all equal. Our goal will be to determine to what extent this
behavior is typical.

But what is the significance of the existence of such a limit? Suppose that indeed the limit matrix
exists and its rows are all equal to a certain distribution vector π. We call such a vector the limiting
distribution. In more precise terms, we have that limn→∞ p

n(i, j) = πj for all states i and j. We have
seen that if X0 has distribution vector v(0), then the distribution vector v(n) of Xn is v(0)Pn. Suppose for
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simplicity2 our Markov chain {Xn}n≥0 has finite state space {0, . . . , k}. Then, taking the limit entrywise,
we obtain

lim
n→∞

v(n) = lim
n→∞

v(0)Pn = v(0) lim
n→∞

Pn = (v0, . . . , vk)

Ö
π0 · · · πk
...

...
...

π0 · · · πk

è
=

Å
π0

k∑
i=0

vi, . . . , πk

k∑
i=0

vi

ã
= π.

This means that, no matter what the initial distribution is, the chain converges to an equilibrium
distribution, namely all the random variables Xn have distribution π for sufficiently large n. In
other words, at any large time n, the probability of being in state i is going to be πi, regardless in
which state the system was at time 0.

Example 2.2.2. Considering again the social mobility chain, we see that, for large n,

Pn ≈

Ñ
.47 .34 .19
.47 .34 .19
.47 .34 .19

é
.

The probability of being middle class is roughly .34, regardless of where we were at the beginning.

Observe now that if a limiting distribution π as above exists, then

π = lim
n→∞

v(0)Pn+1 = ( lim
n→∞

v(0)Pn)P = πP.

Such a property is so important that it deserves a definition:

Definition 2.2.3. A distribution vector π is a stationary distribution for P if πP = π. A Markov chain
admits a stationary distribution if its transition matrix admits one.

If a chain is started with a stationary distribution π as the initial distribution, it keeps the same
distribution forever. Indeed, it is immediate to see by induction that πPn = π for each n. We will
see that many Markov chains automatically find their own way to a stationary distribution as the chain
wanders through time, as the two examples above illustrates. This happens for many Markov chains,
but not all. We will see the conditions required for the chain to find its way to a stationary distribution.
We observed above that every limiting distribution is a stationary distribution. However, the converse
is not always true (see Example 2.2.4) and so the notion of stationary distribution is more general. But
the remarkable thing we will see is that in many interesting situations the two notions in fact coincide.
If that is the case, computing limiting distributions becomes very easy.

Rephrasing Definition 2.2.3, we can equivalently say that a stationary distribution for P is a left
eigenvector for P with eigenvalue 1. How do we check whether a stationary distribution exists and, if it
does, how do we find it? Well, it’s linear algebra. The condition πP = π gives a system of |E| equations
in |E| unknowns (in the finite case) but we also have the condition that the sum of the entries of π is 1,
as π is a distribution vector. This means that one of the equations in the system coming from πP = π
is redundant. Indeed, summing these |E| equations, it is easy to see that we get the one expressing the
fact that π is a distribution.

2If the state space is countable the formula for the limit still holds, but one needs to be very cautious with the limit exchange.
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Example 2.2.4. Let us look for a stationary distribution π = (π1, π2) for the two-state Markov chain.
In view of the previous comments, we already know that the limiting distribution π = ( q

p+q ,
p
p+q ) is a

stationary distribution. But is there any other? We simply need to solve the system


π1(1− p) + π2q = π1

π1p+ π2(1− q) = π2

π1 + π2 = 1

As remarked above, summing the first and second equation, we get the last. This means that we can
discard one equation coming from πP = π and we easily find the unique solution π = ( q

p+q ,
p
p+q ).

Notice that if we allow p and q to take values in [0, 1] and set p = q = 1, we obtain the transition
matrix

P =

Å
0 1
1 0

ã
whose powers oscillates and have no limit. However, π = (1

2 ,
1
2) is a stationary distribution for P. So a

stationary distribution might exist even if a limiting distribution does not.

The following three questions naturally arise from our previous observations:

1. Does every Markov chain admit a stationary distribution?

2. Is the stationary distribution unique?

3. When is that, for n → ∞, Pn converges to the matrix whose rows are the stationary distribution
vector, as seen in Example 2.2.1?

We start by answering the first question in the negative:

Example 2.2.5. Consider the symmetric random walk on Z i.e., the random walk in Example 2.0.7
with p = q = 1/2. Let us check whether it admits a stationary distribution. From the transition graph,
we see that the j-th column of the infinite transition matrix P has only two non-zero entries, namely
p(j − 1, j) = 1/2 and p(j + 1, j) = 1/2. We show that there is no stationary distribution π satisfying the
system πP = π of infinitely many equations. For each j ∈ Z, we must have that

πj =
1

2
πj−1 +

1

2
πj+1.

But this is just the recurrence relation we have seen in Example 1.3.6. We observed that πj can be
expressed in terms of π1 and π0 only: πj = j(π1−π0)+π0. We also have that each πj is a probability and
so πj ∈ [0, 1]. If |π1 − π0| > 0 then, for large j, we would have |πj − π0| > 1, a contradiction. Therefore,
π1 − π0 = 0 and so πj = π0 for each j ∈ Z. But∑

j∈Z
πj =

∑
j∈Z

π0

is clearly divergent (in particular, it can’t be 1) and so this Markov chain has no stationary distribution.

The second question has a negative answer as well:

Example 2.2.6. Consider the Markov chain whose transition matrix is the identity I. Clearly, any dis-
tribution vector π satisfies πI = π and so this Markov chain has infinitely many stationary distributions.
Notice that this Markov chain is kind of trivial: every state is absorbing.
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Here’s another example of the same kind:

Example 2.2.7. Consider the Markov chain with state space {0, 1, 2} and transition matrix

P =

Ñ
1 0 0
0 .4 .6
0 1 0

é
.

Drawing the transition graph, it is easy to see that the chain is not irreducible, as the state 0 is absorbing.
Suppose π is a stationary distribution. Let us write down the system of equations coming from πP = π:

π0 = π0

0.4π1 + π2 = π1

0.6π1 = π2

We also have that π0 + π1 + π2 = 1. The first and second equation from the system are redundant.
Plugging in the third into π0 + π1 + π2 = 1, we get that π0 + 1.6π1 = 1. Clearly, we have infinitely many
stationary distributions: any vector of the formÅ

π0,
1− π0

1.6
, 0.6 · 1− π0

1.6

ã
with π0 ∈ [0, 1].

The problem with the two examples above is that the chains are not irreducible: it is not indifferent
where we start!

Before answering the third question, let’s pause for a moment and see more examples of chains
admitting a unique stationary distribution.

Example 2.2.8 (Ehrenfest chain again). Recalling the definition in Example 2.0.8, we have that, for
1 ≤ i ≤ N − 1, the i-th column of the transition matrix P has only two non-zero entries, namely
p(i − 1, i) = N−(i−1)

N and p(i + 1, i) = i+1
N . Let us look for a solution π = (π0, . . . , πN ) to πP = π. The

entries of π need to satisfy

πi = πi−1
N − (i− 1)

N
+ πi+1

i+ 1

N
,

for 1 ≤ i ≤ N − 1, and π0 = π1/N and πN = πN−1/N . Expressing the first values of πi in terms of π0,
we make the educated guess that πi =

(N
i

)
π0, for each 0 ≤ i ≤ N , and this can be proved by induction.

In order to determine π0 we then use the fact that π is a distribution vector and so

1 =

N∑
i=0

πi =

N∑
i=0

Ç
N

i

å
π0 = π0

N∑
i=0

Ç
N

i

å
= π0 · 2N ,

where we used the binomial theorem in the last equality. Therefore, π0 = 1/2N and the unique stationary
distribution π is such that πi =

(N
i

)
· 1

2N
for each 0 ≤ i ≤ N . Notice that this is the probability of having

i balls in urn A if balls are placed randomly and independently in either urn with probability 1/2.

Example 2.2.9 (Random walk on a graph). A finite simple graph G is a collection of vertices and
edges, where an edge connects two different vertices and any two vertices are connected by at most
one edge. A graph can be concisely represented by its adjacency matrix A whose rows and columns are
labelled with the vertices and whose (u, v) entry is 1, if there is an edge between the vertices u and v,
and 0 otherwise. The degree of a vertex u is the quantity d(u) =

∑
v A(u, v) i.e., the number of vertices
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adjacent to u. The random walk on G is the Markov chain having as state space the set of vertices of G
and whose transition matrix P is given by

p(u, v) =
A(u, v)

d(u)
.

It is easy to see that indeed the entries are nonnegative and the row sums are all 1. What this chain really
does is that it starts at some vertex v of the graph, chooses a neighbor w of v (i.e., a vertex adjacent to
v) uniformly at random, moves to w, and repeats. A simple check shows that the vector π whose u-th
entry is πu = d(u)∑

u d(u) satisfies πP = π i.e., it is a stationary distribution.

2.3 Obstacles to convergence

Let us finally come back to our third question: When is that, for n → ∞, Pn converges to the matrix
whose rows are the stationary distribution vector? In order to answer this, we need to know when Pn

converges in the first place. The following examples show what could go wrong.

Example 2.3.1. Consider again the Ehrenfest chain with N = 3. P and P2 are as follows:

P =

Ü
3/3

1/3 2/3
2/3 1/3

3/3

ê
P2 =

Ü
1/3 2/3

7/9 2/9
2/9 7/9

2/3 1/3

ê
.

What happens to the diagonal entries of P3? Well, pn(i, i) is the probability of having i balls in urn A
after n draws, given that we have i balls in A initially. Since each draw consists in removing a ball from
one urn and putting it in the other, we have that the parity of the number of balls in A changes after
each draw and so pn(i, i) = 0 if n is odd. On the other hand, pn(i, i) is never 0 if n is even.

We have observed the same behavior for chains with infinite state space (see the simple random walk
on Z in Example 2.0.7).

Definition 2.3.2. The period of a state i is the quantity gcd{n ≥ 1 : pn(i, i) > 0}. If pn(i, i) = 0 for all
n ≥ 1, we say i has period∞. A chain is aperiodic if all its states have period 1.

The period is defined so that the time taken to get from state i back to state i again is always a
multiple of the period. In the Ehrenfest chain all states have period 2, as {n ≥ 1 : pn(i, i) > 0} =
{2, 4, 6, . . . }. The same is true for the simple random walk on Z. The two-state Markov chain with
0 < p, q < 1 is clearly aperiodic, as p(i, i) > 0 for each state i. More generally, if the diagonal entries of
the transition matrix are all positive, then the chain is aperiodic.

The fact that all states in the Markov chains we just mentioned have the same period is no coin-
cidence, as these chains are irreducible and periodicity is a class property. This is the content of the
following result.

Lemma 2.3.3. If i ↔ j, then i and j have the same period. In particular, all states in an irreducible set
have the same period.

Proof. Let ti be the period of i and tj that of j. Since i and j communicate, there exist n1 and n2 such
that pn1(i, j) and pn2(j, i) are both positive. The Chapman-Kolmogorov equation implies that

pn1+n2(i, i) ≥ pn1(i, j)pn2(j, i) > 0
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and so ti divides n1 + n2. Let now m ∈ {n ≥ 1 : pn(j, j) > 0}. A double application of the Chapman-
Kolmogorov equation gives

pn1+m+n2(i, i) ≥ pn1(i, j)pm(j, j)pn2(j, i) > 0.

Therefore, ti divides n1 + m + n2. But we have seen that ti divides n1 + n2 and so it must divide
n1 +m+ n2 − (n1 + n2) = m. Since ti divides all elements of {n ≥ 1 : pn(j, j) > 0} and tj is the largest
number with such property, we then have tj ≥ ti. Exchanging i and j in the previous argument, we
obtain that ti ≥ tj and so ti = tj .

Exercise 2.3.4. Determine the period of each state for the Markov chain in Exercise 2.1.39.

Exercise 2.3.5. Suppose an irreducible Markov chain has a transition matrix P such that P2 = P. Show
that the chain is aperiodic.

We can finally state the following remarkable result. If we exclude the obstructions we have identified
so far (reducibility and periodicity), the existence of a stationary distribution implies convergence.

Theorem 2.3.6 (Convergence theorem). If an irreducible and aperiodic Markov chain admits a station-
ary distribution π, then the chain is recurrent, π is unique and it is given by

πj = lim
n→∞

pn(i, j),

where all πj ’s are positive. In other words, Pn converges to the matrix whose rows are the stationary
distribution vector.

Proof. We show only the easy part, namely that if an irreducible Markov chain admits a stationary
distribution π, then the chain is recurrent. Suppose this is not the case. Then, by Theorem 2.1.28, the
chain is transient and limn→∞ p

n(i, j) = 0 for all states i and j. But since π is a stationary distribution,
πPn = π, for each n ≥ 1. Therefore,

πi =
∑
j

πj · pn(j, i)→ 0 as n→∞,

contradicting the fact that
∑

i πi = 1. As already mentioned, the fact that we can exchange the sum and
the limit in the countable case requires justification, but we will not go into details. We simply know we
can do that if the state space is finite.

The Convergence theorem tells us that, for an irreducible and aperiodic Markov chain (with finite
or infinite state space), the existence of a stationary distribution π ensures that the Markov chain will
converge to π as n → ∞. However, recall that if the state space is infinite, it is not guaranteed that a
stationary distribution exists. We have seen this behavior for a periodic Markov chain (Example 2.2.5)
and in fact it may occur even if the chain is aperiodic, as the following example shows.

Example 2.3.7. Consider again the Markov chain in Example 2.1.6. Checking the transition graph, the
chain is clearly irreducible and aperiodic. However, it can be easily seen that it admits no stationary
distribution.

If a stationary distribution does not exist, then the following occurs:

Theorem 2.3.8. If a Markov chain is irreducible and aperiodic but admits no stationary distribution, then
limn→∞ p

n(i, j) = 0 for all i and j.
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We have seen that if an irreducible Markov chain is transient, then limn→∞ p
n(i, j) = 0 for all i and j.

In view of Theorem 2.3.8, it would then be tempting to guess that the absence of a stationary distribution
is caused by transient states. It turns out this is not entirely correct: There are certain recurrent states
exhibiting a similarly bad behavior. We know that every recurrent state is visited infinitely often almost
surely, but the expected return time might be finite or not. This leads to the following distinction:

Definition 2.3.9. Let j be a recurrent state and let

µj =
∞∑
n=1

nf
(n)
j,j .

j is positive recurrent if µj converges and null recurrent otherwise.

For a recurrent state j, we can think of µj as the expected number of steps to first return to j given
that X0 = j. Since in general there is no upper bound on the number of steps to first return, this is
not the expectation of a random variable as defined in Section 1.4. However, it is worth to know that
we could generalize our definition of random variables so that µj becomes indeed the expectation of a
random variable. The following result gives a characterization of positive and null recurrence.

Lemma 2.3.10. Let j be a recurrent state and suppose that limn→∞ p
n(j, j) = u. Then u > 0 if and only

if j is positive recurrent, in which case u = 1/µj .

Consider an irreducible and aperiodic Markov chain. If the chain is transient, then the Convergence
theorem tells us it cannot admit a stationary distribution. On the other hand, if the chain is recurrent,
then two possibilities may arise. If it admits no stationary distribution, then Theorem 2.3.8 tells us that
limn→∞ p

n(i, j) = 0 for all i, j and Lemma 2.3.10 tells us that the chain is null recurrent. But if it admits
a stationary distribution π then, by the Convergence theorem, limn→∞ p

n(j, j) = πj > 0 for each j and
so the chain is positive recurrent by Lemma 2.3.10. We can summarize this as follows:

For an irreducible and aperiodic Markov chain, exactly one of the following occurs:

1. The chain is transient, it admits no stationary distribution, limn→∞ p
n(i, j) = 0 for all i, j

and in fact
∑

n p
n(i, j) <∞.

2. The chain is recurrent, it admits no stationary distribution, limn→∞ p
n(i, j) = 0 for all i, j

but
∑

n p
n(i, j) =∞ and µj =∞.

3. The chain is recurrent, it admits a unique stationary distribution π, limn→∞ p
n(i, j) = πj > 0

for all i, j and µj = 1/πj <∞.

These three situations correspond to the irreducible chain being transient, null recurrent or posi-
tive recurrent, respectively.
Moreover, in the positive recurrent case, we can compute the expected number of steps to first
return to j, which we interpreted to be µj , simply by computing the stationary distribution.

Example 2.3.11. Consider again the Markov chain in Example 2.1.6. What is the expected number of
steps to first return to 1? Well, we figured out that f (n)

1,1 = 1/n(n+ 1). Therefore,

µ1 =
∞∑
n=1

1

n+ 1
=∞

and the expected number of steps to first return to 1 is not finite. We could have reached the same
conclusion by recalling that the chain is recurrent and aperiodic but has no stationary distribution.
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Example 2.3.12. A particle moves on the vertices of an octahedron in the following way: at each step
the particle is equally likely to move to each of the adjacent vertices, independently of its past motion.
Let i be the initial vertex occupied by the particle. What is the expected number of steps until the particle
returns to i?

We immediately recognize this as a random walk on a graph (Example 2.2.9). The octahedron has
6 vertices, each of degree 4, and so the sum of the degrees of all vertices is 4 · 6. The random walk on
the octahedron is clearly irreducible. It is also aperiodic. Indeed, for each vertex i, both p3(i, i) and
p4(i, i) are positive. Since the stationary distribution vector has all entries equal to 1/6, we have that the
expected number of steps until return is 6.

Exercise 2.3.13. Show that the random walk on a graph G is aperiodic if and only if the graph G contains
a cycle of odd length.

Exercise 2.3.14. Consider the Markov chain in Example 2.1.29. Compute the expected number of steps to
first return to state 3 in two ways: first by using Definition 2.3.9 and then by using the previous discussion.

Exercise 2.3.15. Consider the Markov chains with state space {1, 2, 3} and transition matricesÑ
1 0 0

1/3 1/3 1/3
1/4 1/4 1/2

é
and

Ñ
0 0 1

1/3 1/3 1/3
1/4 1/4 1/2

é
.

In both cases compute the expected number of steps to first return 1.

Under the convention 1/∞ = 0, the relation limn→∞ p
n(i, j) = 1/µj in a recurrent chain has another

interesting consequence. Let Vn(j) be the number of visits to j up to time n− 1. We mentioned that we
can think of µj as the average number of steps to first return to j given that X0 = j. But then, if the time
from one visit to the next is about µj , we expect that Vn(j)/n should be about 1/µj . Let’s verify this.
What is the expectation of Vn(j)/n? Well, we can write Vn(j) as a sum of indicator random variables

Vn(j) =

n−1∑
k=0

I{Xk=j}

and so

E
Å
Vn(j)

n
|X0 = i

ã
=

1

n

n−1∑
k=0

E(I{Xk=j}|X0 = i) =
1

n

n−1∑
k=0

P(Xk = j|X0 = i) =
1

n

n−1∑
k=0

pk(i, j).

We can then use the following result from Analysis:
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Lemma 2.3.16 (Cesàro’s lemma). If a real sequence {ak} converges to a, then the sequence of the partial
averages {n−1

∑n−1
k=0 ak} converges to a as well.

Since limn→∞ p
n(i, j) = 1/µj , Cesàro’s lemma implies that

lim
n→∞

E
Å
Vn(j)

n
|X0 = i

ã
=

1

µj
.

The expected proportion of time that the chain is in state j converges to the inverse of the expected
number of steps to first return to j.

Exercise 2.3.17. A king confined to a 5× 5 chessboard instantaneously makes standard king’s moves each
second in such a way that it is equally likely to move to any of the squares one move away from it. What
long-run fraction of the time does it occupy the center square?

We have seen in Example 2.3.7 that an irreducible and aperiodic Markov chain might not admit a
stationary distribution. The example we gave had an infinite state space. The goal now is to show
that if the state space is finite, then a (unique) stationary distribution always exists and this stationary
distribution is the limiting distribution. The following result can then be viewed as the finite case of the
Convergence theorem.

Theorem 2.3.18. An irreducible and aperiodic Markov chain with finite state space has a unique station-
ary distribution π given by

πj = lim
n→∞

pn(i, j).

Proof. We assume the existence of limn→∞ p
n(j, j) for each j (which is the hard part of the proof) and

show the remaining assertions. Namely,

(a) For any i 6= j,
lim
n→∞

pn(i, j) = lim
n→∞

pn(j, j).

(b) Letting πj = limn→∞ p
n(i, j) gives a stationary distribution.

(c) The stationary distribution is unique.

Proof of (a). Recall the first-passage decomposition

pn(i, j) =

n∑
m=1

f
(m)
i,j · p

n−m(j, j)

and that fi,j =
∑∞

m=1 f
(m)
i,j is the probability that the chain ever visits state j starting in i. Since the chain

is irreducible and finite, all states are recurrent (Lemma 2.1.34) and so

1 = fi,j =

∞∑
m=1

f
(m)
i,j = lim

n→∞

n∑
m=1

f
(m)
i,j .



CHAPTER 2. MARKOV CHAINS 80

But then, for any ε > 0, there exists m1 ∈ N such that
∑m1

m=1 f
(m)
i,j ≥ 1− ε. Therefore,

lim
n→∞

pn(i, j) = lim
n→∞

n∑
m=1

f
(m)
i,j · p

n−m(j, j) ≥ lim
n→∞

m1∑
m=1

f
(m)
i,j · p

n−m(j, j) =

m1∑
m=1

f
(m)
i,j lim

n→∞
pn−m(j, j)

=

m1∑
m=1

f
(m)
i,j lim

n→∞
pn(j, j)

≥ (1− ε) lim
n→∞

pn(j, j).

Notice that we used finiteness to exchange sums and limits. We now use again the convergence of∑∞
m=1 f

(m)
i,j , this time as follows. Given our ε as above, there exists m2 ∈ N such that

∑∞
m=m2

f
(m)
i,j < ε

(tails of a convergent series vanish). Then

pn(i, j) =

n∑
m=1

f
(m)
i,j · p

n−m(j, j) ≤
∞∑
m=1

f
(m)
i,j · p

n−m(j, j)

≤
m2∑
m=1

f
(m)
i,j · p

n−m(j, j) +
∞∑

m=m2

f
(m)
i,j · p

n−m(j, j)

≤
m2∑
m=1

f
(m)
i,j · p

n−m(j, j) +

∞∑
m=m2

f
(m)
i,j

<

m2∑
m=1

f
(m)
i,j · p

n−m(j, j) + ε.

But then

lim
n→∞

pn(i, j) ≤ ε+ lim
n→∞

m2∑
m=1

f
(m)
i,j · p

n−m(j, j) ≤ ε+

m2∑
m=1

f
(m)
i,j · lim

n→∞
pn−m(j, j) ≤ ε+ lim

n→∞
pn(j, j),

where the last inequality follows from the fact that
∑m2

m=1 f
(m)
i,j ≤ 1. Combining

lim
n→∞

pn(i, j) ≥ (1− ε) lim
n→∞

pn(j, j) with lim
n→∞

pn(i, j) ≤ ε+ lim
n→∞

pn(j, j),

we obtain that limn→∞ p
n(i, j) = limn→∞ p

n(j, j) for each i and j.
Proof of (b). Let m be the number of states. We first show that πj = limn→∞ p

n(i, j) gives a distribution
vector. Clearly, πj ≥ 0 for each j. Moreover, since

∑m
j=1 p

n(i, j) = 1, we have

1 = lim
n→∞

m∑
j=1

pn(i, j) =

m∑
j=1

lim
n→∞

pn(i, j) =

m∑
j=1

πj .

We now show that πP = π. Since pn+1(i, j) =
∑m

k=1 p
n(i, k)p(k, j), letting n→∞, we obtain

πj =

m∑
k=1

πk · p(k, j).

Proof of (c). Suppose φ is another stationary distribution. Then φPn = φ, from which

φj =
m∑
k=1

φk · pn(k, j),
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and letting n→∞, we obtain

φj =

m∑
k=1

φk · πj = πj

m∑
k=1

φk = πj .

This concludes the proof.

Remark 2.3.19. Notice that the interesting part in Theorem 2.3.18 is not the existence of a stationary
distribution but rather the fact it is the limiting distribution. Indeed, any Markov chain with finite state
space admits a stationary distribution. The reader familiar with Topology might want to check a nice
proof of this result using Brouwer’s fixed-point theorem!3

Exercise 2.3.20. Consider the Markov chain whose transition matrix isÑ
1 0 0

1/4 1/2 1/4
0 0 1

é
.

How many stationary distributions does it admit? Does this contradict Theorem 2.3.18?

We conclude this section with some remarks about positive and null recurrence. We know that any
irreducible set C is either transient or recurrent. It turns out that if it is recurrent, then either all states
in C are positive recurrent or all are null recurrent. In other words, positive and null recurrence are
class properties.

Proposition 2.3.21. Let C be an irreducible set. If C is recurrent, then either all states are positive recur-
rent or all are null recurrent.

We have seen that every closed and finite communication class is recurrent. In fact something
stronger is true: the class must be positive recurrent. This should not come as a surprise as it is natural
to think that if the class is finite, the expected number of steps to first return to a given state should be
finite.

Lemma 2.3.22. If a closed communication class is finite, then it is positive recurrent. In particular, every
irreducible Markov chain with finite state space is positive recurrent.

The following is a particularly useful criterion for positive recurrence. It justifies our previous remark
that the three distinct scenarios occurring for an irreducible and aperiodic Markov chain correspond to
the cases of the chain being transient, positive recurrent or null recurrent.

Theorem 2.3.23. An irreducible Markov chain is positive recurrent if and only if it admits a stationary
distribution.

Theorem 2.3.23 is a powerful tool for determining the nature of the states of an irreducible Markov
chain, as the following examples show.

Example 2.3.24. Consider the symmetric random walk on Z (i.e., p = q). The chain is recurrent
(Example 2.1.16) and admits no stationary distribution (Example 2.2.5). But then, being irreducible,
Theorem 2.3.23 and Proposition 2.3.21 imply that it is null recurrent.

Example 2.3.25. Consider the two-state Markov chain with 0 < p, q < 1. It is irreducible and admits a
stationary distribution. Theorem 2.3.23 implies it is positive recurrent. The same holds for the Ehrenfest
chain. Alternatively, we could have simply used Lemma 2.3.22.

3http://galton.uchicago.edu/~lalley/Courses/383/MarkovChains.pdf.

http://galton.uchicago.edu/~lalley/Courses/383/MarkovChains.pdf
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Example 2.3.26. We now use Theorem 2.3.23 to classify the states of the following Markov chain with
state space {0, 1, 2, . . . } and transition matrix

P =

â
p0 p1 p2 p3 · · ·
1
1
1
...

ì
,

where
∑

i pi = 1 and 0 < pi < 1 for each i. Checking the transition graph, it is easy to see that the
chain is irreducible. We now show it admits a stationary distribution π. If π exists, it has to satisfy the
following system

π0 = π0p0 +
∑
i≥1

πi

πk = π0pk for each k ≥ 1∑
i

πi = 1

Combining the first equation with the last, we get π0 = π0p0 + (1− π0), from which π0 = 1
2−p0 . But then

the values of πk with k ≥ 1 are given by πk = pk
2−p0 . In conclusion, a stationary distribution exists and so

the chain is positive recurrent.

2.4 Absorbing chains

We now restrict ourselves to Markov chains with finite state space. Recall that a state i is absorbing if
{i} is a closed set. Therefore, p(i, i) = 1 and i is in particular recurrent.

Definition 2.4.1. A Markov chain is absorbing if it has at least one absorbing state and all non-
absorbing states are transient.

Suppose our absorbing Markov chain has k states: t transient and k − t absorbing. How does the
transition matrix look like? We can label rows and columns of the transition matrix so that the transient
states appear first. The transition matrix then looks like

P =

Å
Q R

0 I

ã
,

where Q is a t × t matrix indexed by the transient states, R is a t × (k − t) matrix, 0 is the (k − t) × t
matrix whose entries are all zero and I is the (k − t) × (k − t) identity matrix. We have written P as
a block matrix, where the submatrices Q, 0, R, I are its blocks. These blocks can be treated as matrix
entries while doing the usual matrix operations (check this!). We then have that

P2 =

Å
Q R

0 I

ãÅ
Q R

0 I

ã
=

Å
Q2 +R0 QR+RI

0Q+ I0 0R+ I2

ã
=

Å
Q2 (Q+ I)R

0 I

ã
.

In general, it easy to see by induction that

Pn =

Å
Qn (I +Q+ · · ·+Qn−1)R

0 I

ã
.
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What is limn→∞Pn? Well, if it exists it should be

lim
n→∞

Pn =

Å
limn→∞Q

n limn→∞(I +Q+ · · ·+Qn−1)R

0 I

ã
.

But the submatrix Q is indexed by the transient states and we know that, for any transient states i and
j, we have limn→∞ p

n(i, j) = 0 (Corollary 2.1.14). This implies that limn→∞Q
n = 0. In order to study

limn→∞Pn, it is then enough to study limn→∞(I +Q+ · · ·+Qn−1)R. The following result is the matrix
analogue of the sum of a geometric series.

Lemma 2.4.2. Let A be an n× n matrix such that An → 0 as n→∞. Then

lim
n→∞

(I +A+ · · ·+An−1) = (I −A)−1.

Proof. For fixed n, we have that

(I −A)(I +A+A2 + · · ·An) = I +A+A2 + · · ·+An − (A+A2 + · · ·+An +An+1) = I −An+1.

Assuming for a moment that I −A is invertible, we have that

I +A+A2 + · · ·+An = (I −A)−1(I −An+1)

and letting n → ∞, we obtain the desired equality. It remains to show that I − A is indeed invertible.
Consider the linear system (I −A)x = 0. The invertibility of I −A is equivalent to the fact that the only
solution to this system is the zero vector x = 0. We have that 0 = (I − A)x = x − Ax and so x = Ax.
Iterating, we obtain

x = Ax = A(Ax) = A2x = · · · = Anx,

for each n ≥ 1. But then, passing to the limit, x = limn→∞A
nx = 0.

We can apply Lemma 2.4.2 to our setting as follows: Since we know that Qn → 0 as n → ∞, we
obtain that

lim
n→∞

Pn =

Å
0 (I −Q)−1R

0 I

ã
.

The moral is the following:

The limiting submatrix (I −Q)−1R is indexed by transient rows and absorbing columns. Its (i, j)-
entry is the long-term probability that the chain started in transient state i is absorbed in state
j.

Definition 2.4.3. For an absorbing Markov chain, (I −Q)−1 is called the fundamental matrix.

Example 2.4.4 (Gambler’s ruin again). We can introduce a Markov chain in Example 1.3.6 as follows.
We let Xn to be the gambler’s fortune after the n-th toss. {Xn}n≥0 gives a Markov chain with state space
{0, . . . , N} and transition probabilities p(i, i + 1) = 1/2 = p(i, i − 1), for each 1 ≤ i ≤ N − 1, and
p(0, 0) = 1 = p(N,N) (these are obtained by translating the rules of the gamble).

We then have that 0 and N are absorbing states and all the others are transient as {1, 2, . . . , N − 1}
is not closed. The transition matrix P can then be written in block form as above. In this way, we
can compute the probability that the gambler is ultimately bankrupted given that he starts with k units
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1
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1
2

1
2

1
2

N − 22 N − 110 N

1 1

1
2

1
2

Figure 2.10: Transition graph of gambler’s ruin. States 0 and N are absorbing.

(recall we computed this in Example 1.3.6 by conditioning on the first gamble). We work out the case
N = 5. The transition matrix is

P =

1 2 3 4 0 5â ì1 0 1/2 0 0 1/2 0
2 1/2 0 1/2 0 0 0
3 0 1/2 0 1/2 0 0
4 0 0 1/2 0 0 1/2
0 0 0 0 0 1 0
5 0 0 0 0 0 1

We then have that

Q =

1 2 3 4Ö è1 0 1/2 0 0
2 1/2 0 1/2 0
3 0 1/2 0 1/2
4 0 0 1/2 0

and

R =

0 5Ö è1 1/2 0
2 0 0
3 0 0
4 0 1/2

The probability that the gambler is ultimately bankrupted given that he starts with 3 units is then the
(3, 1) entry of (I − Q)−1R. Similarly, the probability that the gambler ultimately reaches the amount
N = 5 given that he starts with 3 units is the (3, 2)-entry of (I −Q)−1R.

The fundamental matrix contains other important information related to an absorbing Markov chain:

Theorem 2.4.5. Consider an absorbing Markov chain with k transient states and let F = (I − Q)−1 be
the k × k fundamental matrix. Then the (i, j)-entry Fij of F is the expected number of visits to j given that
the chain starts in i.

The theorem above has the following important consequence. What is the expected number of steps
from a certain transient state i until absorption? Well, for an absorbing Markov chain started in transient
state i, the expected number of steps to reach an absorbing state is the sum of the number of transitions
from i to each of the transient states, namely

∑
k transient Fik. To summarize what we have seen so far:
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Absorption probability: The probability that from transient state i the chain is absorbed in j is
the (i, j)-entry of FR = (I −Q)−1R.

Absorption time: The expected number of steps from a transient state i until absorption is the
sum of the entries on the i-th row of F = (I −Q)−1.

Example 2.4.6 (Two year college). At a local two year college, 60% of freshmen become sophomores,
25% remain freshmen, and 15% drop out. 70% of sophomores graduate and transfer to a four year col-
lege, 20% remain sophomores and 10% drop out. What is the probability that a freshman will graduate?

We introduce a Markov chain with four states F, S,G,D, where the notation is self-explanatory. The
description above tells us how the transition matrix looks like:

P =

F S G DÖ èF 0.25 0.6 0 0.15
S 0 0.2 0.7 0.1
G 0 0 1 0
D 0 0 0 1

States G and D are obviously absorbing, whereas all the others are transient. The desired probability is
nothing but the probability that from transient state F the chain is absorbed in G. We have seen that
this can be computed as the entry corresponding to (F,G) in (I −Q)−1R. But

Q =

Å
0.25 0.6

0 0.2

ã
and R =

Å
0 0.15

0.7 0.1

ã
.

Therefore, the desired probability is the (1, 1)-entry of

(I −Q)−1R =

Å
0.75 −0.6

0 0.8

ã−1 Å
0 0.15

0.7 0.1

ã
=

1

0.75 · 0.8

Å
0.8 0.6
0 0.75

ãÅ
0 0.15

0.7 0.1

ã
,

which is
0.6 · 0.7
0.75 · 0.8

= 0.7.

Consider now the following question. What is the expected time for a freshman to graduate or drop
out? Well, this is the expected time from state F until absorption. We have seen that this value can be
computed as the sum of the entries on the row corresponding to F in (I −Q)−1 (don’t confuse the state
F with the fundamental matrix carrying the same name!). In other words, the sum of the entries on the
first row of

(I −Q)−1 =

Å
0.75 −0.6

0 0.8

ã−1

=
1

0.75 · 0.8

Å
0.8 0.6
0 0.75

ã
,

which is
0.8

0.75 · 0.8
+

0.6

0.75 · 0.8
;

roughly 2.3 years.

The ideas above can be used to compute expected hitting times. Say that we have an irreducible
Markov chain and we want to compute the expected time until state i is first hit. We modify the transition
matrix P so that i becomes an absorbing state. By irreducibility and finiteness, all other states are now
transient. But then we are in the setting introduced at the beginning of this section and the desired
expected time is just the expected time until absorption in the modified chain. The following example is
a summary of these type of problems.
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a

b

cd

Example 2.4.7. Consider the random walk on the graph depicted in figure and starting in a.

1. Find the expected number of steps to first return to a.

2. Find the expected number of steps to first hit d.

3. Find the probability that the walk hits c before d.

Consider 1. We can proceed in several ways. The transition matrix of the random walk is

P =

a b c dÖ èa 0 1 0 0
b 1/3 0 1/3 1/3
c 0 1/2 0 1/2
d 0 1/2 1/2 0

Since the walk is irreducible, aperiodic (why?) and admits a stationary distribution π, the Convergence
theorem and Lemma 2.3.10 tell us that the expected number of steps to first return to a is 1/πa, where
πa is the a-entry of the stationary distribution vector. But we know that

πa =
d(a)∑
u d(u)

=
1

8

and so the desired expectation is 8.
Alternatively, observe that after one step the walk is in b with probability 1 and so we can compute

the expected number of steps to first return to a as the expected number of steps to first hit a starting
in b plus 1. To compute the expected number of steps to first hit a starting in b, we first turn a into an
absorbing state i.e., we consider the following modified Markov chain:

P′ =

a b c dÖ èa 1 0 0 0
b 1/3 0 1/3 1/3
c 0 1/2 0 1/2
d 0 1/2 1/2 0

We then compute the fundamental matrix (I −Q)−1 of the new absorbing chain, where

Q =

b c d( )b 0 1/3 1/3
c 1/2 0 1/2
d 1/2 1/2 0
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The desired expectation is the first row sum of (I −Q)−1, which is 7. But then the expected number of
steps to first return to a is 8 (as shown previously). To answer 2., we simply turn d in P into an absorbing
state and proceed as in 1. The answer is 13/3.

Consider now 3. We first make c and d absorbing states:

P′′ =

a b c dÖ èa 0 1 0 0
b 1/3 0 1/3 1/3
c 0 0 1 0
d 0 0 0 1

In the modified chain with transition matrix P′′, a is transient and c and d are absorbing (notice however
that in the original walk all states were positive recurrent). We then compute the probability that from
transient state a the chain is absorbed in c. We know this is the (a, c)-entry of (I −Q)−1R, where

Q =

a bÅ ã
a 0 1
b 1/3 0

and

R =

c dÅ ã
a 0 0
b 1/3 1/3

An easy computation gives the value 1/2. But the modified walk, starting in a, is absorbed in c if and
only if the original walk hits c before d. Therefore, the desired probability is exactly 1/2. Notice that, in
this specific example, we could have invoked symmetry. Indeed, either c is hit before d or d is hit before
c, and these two events have equal probability given the symmetry of the graph.

An interesting special case of expected hitting times is the expected time of sequence patterns in
repeated experiments. Suppose the elements of a set S are repeatedly sampled. A pattern is a sequence
sn = p1, . . . , pn, where each pi belongs to S. For example, we might repeatedly toss a coin. In this case,
S = {H,T} and the sequence H,T,H is a pattern. What is the expected time until a certain pattern sn
first appears? To answer this question, we introduce a Markov chain with state space {∅, s1, . . . , sn},
where each si is the subsequence of sn consisting of the first i elements. We make sn an absorbing state
and we let Xn to be the largest subsequence of sn appearing after the most recent samples. The desired
expected time can then be computed using the technique above.

Example 2.4.8. Suppose a fair coin is tossed. What is the expected time until H,H first appears? We
introduce a Markov chain with state space {∅, H,HH} and transition matrix

P =

∅ H HH( )∅ 1/2 1/2 0
H 1/2 0 1/2
HH 0 0 1

The desired expected time is the sum of the entries on the first row of

(I −Q)−1 =

Å
1/2 −1/2
−1/2 1

ã−1

= 4

Å
1 1/2

1/2 1/2

ã
.

The expected time is then 6.



CHAPTER 2. MARKOV CHAINS 88

Exercise 2.4.9. A fair coin is tossed repeatedly until the sequence H,T,H appears. What is the expected
number of tosses needed?

Exercise 2.4.10. A person has 3 umbrellas, some at office, some at home. Every day, he walks to the office
in the morning and returns home in the evening. In each trip, he takes an umbrella with him only if it is
raining. Suppose that, in every trip, the probability of rain is 0.2 (hence we know the gentleman is unlikely
to live in Belfast).

1. What percentage of time does he get wet?

2. What is the expected number of trips until all umbrellas are at the same location?



Chapter 3

Continuous Random Variables

In this section we are essentially going to revisit the notions introduced in Section 1.4, this time in the
context of continuous random variables. Recall that a random variable X is continuous if its distribution
function FX can be expressed as

FX(x) = P(X ≤ x) =

∫ x

−∞
fX(u) du,

for some integrable function fX : R → [0,∞) called the pdf of X. Moreover, if the distribution function
is differentiable at x ∈ R, then

fX(x) =
dFX(x)

dx
.

The following properties hold for a continuous random variable X and its pdf fX :

1. P(x < X ≤ y) =
∫ y
x fX(u) du.

2. P(X = x) = 0.

3.
∫∞
−∞ fX(u) du = 1.

4. P(X ∈ B) =
∫
B fX(u) du, for every B ⊆ R for which the (Riemann) integral exists.

Definition 3.0.1. Let X be a continuous random variable with pdf fX(x). The expectation of X is

E(X) =

∫ ∞
−∞

xfX(x) dx,

provided that the following improper integral converges:∫ ∞
−∞
|xfX(x)| dx <∞.

Remark 3.0.2. The convergence of the improper integral guarantees that the expectation is well-defined
and finite.

We have seen that if X is an arbitrary random variable and g : R → R is continuous, then g(X) is a
random variable. In fact, if X is discrete, g(X) is discrete for any function g. On the other hand, if X is
continuous, g(X) can be either continuous or discrete. The former occurs for example if g is the identity,
the latter by taking g as follows (why?):

g(x) =

®
1 if x > 0;

0 otherwise.

89
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Given the pdf of X, how do we compute the pdf of g(X)? The standard technique is illustrated in the
following example.

Example 3.0.3. Given a continuous random variable X, we compute the pdf of Y = X2. The idea is to
first obtain the distribution function of Y and then differentiate. For each y > 0, we have

FY (y) = P(Y ≤ y) = P(X2 ≤ y) = P(−√y ≤ X ≤ √y) = FX(
√
y)− FX(−√y),

where in the last equality we used Lemma 1.4.29. Therefore,

fY (y) =
dFY (y)

dy
=
fX(
√
y)

2
√
y

+
fX(−√y)

2
√
y

,

where the last equality follows from the Chain rule.

If we are just interested in the expectation of g(X), we can however skip the computation of the
pdf of g(X), thanks to the following result. It is the continuous analogue of the Law of the unconscious
statistician.

Theorem 3.0.4 (LOTUS). If X and g(X) are continuous random variables, then

E(g(X)) =

∫ ∞
−∞

g(x)fX(x) dx.

Example 3.0.5. Let X be a continuous random variable with pdf

fX(x) =

®
3x2 if 0 < x < 1;

0 otherwise.

Compute the expectation of Y = X2. We can proceed in two ways. Either we compute the pdf of Y and
use the definition of expectation or just apply LOTUS. As for the first way, we have seen in Example 3.0.3
that

fY (y) =
fX(
√
y) + fX(−√y)

2
√
y

=


3y

2
√
y

if 0 < y < 1;

0 otherwise.

Therefore,

E(Y ) =

∫ ∞
−∞

yfY (y) dy =

∫ 1

0

3

2
y3/2 dy =

3

5
.

Using LOTUS, we immediately get

E(Y ) =

∫ ∞
−∞

x2fX(x) dx =

∫ 1

0
3x4 dx =

3

5
.

Definition 3.0.6. A continuous random variable X with pdf given by

fX(x) =

®
λe−λx if x ≥ 0;

0 otherwise.

is called exponential with parameter λ.
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The function fX(x) above is a legitimate pdf. Indeed,∫ ∞
−∞

fX(x) dx =

∫ ∞
0

λe−λx dx = 1.

Moreover, for any a ≥ 0,

P(X ≥ a) =

∫ ∞
a

λe−λx dx = e−λa (3.1)

and so the probability that X exceeds a falls exponentially. The exponential random variable is a good
model for the amount of time until a certain event occurs. For example, the amount of time until a piece
of equipment breaks down, until a car accident occurs or until the next earthquake. Using integration
by parts, it is easy to see that the expectation of an exponential random variable X with parameter λ is

E(X) =

∫ ∞
−∞

xfX(x) dx =

∫ ∞
0

xλe−λx dx =
1

λ
.

Example 3.0.7. Suppose that the duration of a phone call in minutes is an exponential random variable
X with parameter λ = 1/10. What is the probability that the phone call lasts more than 10 minutes?
This is just P(X > 10) = e−1. Suppose now we know that the phone call has already lasted 10 minutes.
What is the probability that it will last at least 10 more minutes? The probability we are interested in is

P(X > 20|X > 10) =
P(X > 20, X > 10)

P(X > 10)
=

P(X > 20)

P(X > 10)
=
e−2

e−1
= e−1.

The same argument used in the previous example shows that if Y is exponential, then

P(Y > t|Y > s) = P(Y > t− s),

for each t > s. But this is the lack of memory property and we have seen that, in the discrete world, the
geometric random variable has this property. It turns out that the exponential random variable can be
viewed as the continuous analogue of the geometric random variable in the following sense. Suppose X
is a geometric random variable with parameter p, for p small and recall that P(X > n) = (1− p)n. Let’s
now consider the rescaled random variable X/E(X) = pX. We have that

P(pX > t) = P(X > t/p) ≈ (1− p)
t
p ≈ e−t,

where we used the fact that e = limn→∞(1 + 1/n)n. In other words, the rescaled geometric pX behaves
like the exponential with parameter λ = 1 when p is small.

Definition 3.0.8. The variance of a continuous random variable X is defined exactly as in the discrete
case: var(X) = E((X − E(X))2).

By LOTUS, the variance can be computed as follows:

var(X) =

∫ ∞
−∞

(x− E(X))2fX(x) dx

=

∫ ∞
−∞

x2fX(x) dx− 2E(X)

∫ ∞
−∞

xfX(x) dx+ E(X)2

∫ ∞
−∞

fX(x) dx

= E(X2)− 2E(X)E(X) + E(X)2

= E(X2)− E(X)2,

exactly as in the discrete case.

Example 3.0.9. The variance of the exponential random variable X with parameter λ is 1/λ2. Indeed,
we know that E(X) = 1/λ. Moreover, by LOTUS and integration by parts, we have that

E(X2) =

∫ ∞
0

x2fX(x) dx =
2

λ2
.
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3.1 Multiple continuous random variables

Definition 3.1.1. Two continuous random variables X and Y admit joint pdf if there exists a nonneg-
ative integrable function fX,Y : R2 → R such that

P((X,Y ) ∈ B) =

∫∫
(x,y)∈B

fX,Y (x, y) dxdy,

for every B ⊆ R2 for which the double integral exists.

Suppose X and Y admit joint pdf fX,Y . If B is the rectangle [a, b]× [c, d] ⊆ R2, then

P(a ≤ X ≤ b, c ≤ Y ≤ d) =

∫ d

c

∫ b

a
fX,Y (x, y) dxdy.

On the other, letting B = R2, we obtain

1 = P((X,Y ) ∈ R2) =

∫ ∞
−∞

∫ ∞
−∞

fX,Y (x, y) dxdy.

As in the discrete case, we can recover the densities of X and Y from the joint pdf:

Lemma 3.1.2. For continuous random variables X and Y with joint pdf fX,Y , we have

fX(x) =

∫ ∞
−∞

fX,Y (x, y) dy and fY (y) =

∫ ∞
−∞

fX,Y (x, y) dx.

Remark 3.1.3. Contrary to the discrete case, a joint pdf might not exist. Here is the intuition. Take X
as the uniform random variable on [0, 1] and Y = X. Suppose that X and Y admit a joint pdf fX,Y
and let B = {(x, y) ∈ [0, 1] × [0, 1] : x = y} be the main diagonal of the unit square. We have that
P((X,Y ) ∈ B) = 1 and so

1 =

∫∫
(x,y)∈B

fX,Y (x, y) dxdy.

But the double integral gives the volume under the surface z = fX,Y (x, y) and above B, which has area
0, and so it cannot be 1.

Example 3.1.4 (Two-dimensional uniform pdf). Suppose S ⊆ R2 has finite area. We say that the pair
(X,Y ) of continuous random variables is uniformly distributed over S if the joint pdf of X and Y is
given by

fX,Y (x, y) =


1

area(S)
if (x, y) ∈ S;

0 otherwise.

We then have that, for B ⊆ R2,

P((X,Y ) ∈ B) =

∫∫
(x,y)∈B

fX,Y (x, y) dxdy =
1

area(S)

∫∫
(x,y)∈B∩S

dxdy =
area(B ∩ S)

area(S)
.

Suppose that a point is chosen at random from an open unit disk. What is the probability that the sum
of its coordinates is larger than 1?
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Let B1 = {(x, y) ∈ R2 : x2 + y2 < 1} be the open unit disk centered at the origin and let (X,Y ) be
the coordinates of our random point. It is reasonable to assume that (X,Y ) is uniformly distributed over
B1:

fX,Y (x, y) =


1

π
if (x, y) ∈ B1;

0 otherwise.

We need to compute P(X + Y > 1). It is then enough to compute the area of the intersection between
B1 and the half-plane {(x, y) ∈ R2 : x+ y > 1}. Drawing a picture, it is easy to see that this area is π

4 −
1
2

and so P(X + Y > 1) = 1
4 −

1
2π .

Example 3.1.5 (Buffon’s needle). We throw a needle of length ` at random on a surface marked with
horizontal lines at distance d (see Figure 3.1). Assume ` < d, so that the needle can intersect at most
one horizontal line. What is the probability that the needle will intersect one of these lines?

X
Θ Θ

X

d

Figure 3.1

Consider the midpoint of the needle and the vertical segment between the midpoint and the closest
horizontal line (the dotted lines in Figure 3.1). LetX be the length of this segment and let Θ be the acute
angle between the needle and the segment. The pair of random variables (X,Θ) uniquely determines
the position of the needle and we may assume it is uniformly distributed over R = [0, d2 ] × [0, π2 ]. We
then have that

fX,Θ(x, θ) =


4

πd
if (x, θ) ∈ R;

0 otherwise.

The needle will intersect one of the lines if and only if

X

cos Θ
<
`

2
.

Therefore, the desired probability is ∫∫
(x,θ)∈A

fX,Θ(x, θ) dxdθ,

where A = {(x, θ) ∈ R2 : 0 ≤ x ≤ d/2, 0 ≤ θ ≤ π/2, x < ` cos θ/2}. We then have that∫∫
(x,θ)∈A

fX,Θ(x, θ) dxdθ =

∫ π
2

0

∫ ` cos θ
2

0

4

πd
dxdθ =

2`

πd
.
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This formula suggests a way to calculate π: Throw the needle a large number of times, count the
number of intersections in the first n tosses and divide by n. This will give an estimate of the true
probability 2`/πd and so

π ∼ 2n`

#{intersections in first n tosses} · d
.

A generalized version of the LOTUS still holds:

Lemma 3.1.6. Let X and Y be continuous random variables with joint pdf fX,Y (x, y) and let g : R2 → R.
Then

E(g(X,Y )) =

∫ ∞
−∞

∫ ∞
−∞

g(x, y)fX,Y (x, y) dxdy.

In particular, E(aX + bY ) = aE(X) + bE(Y ).

3.2 Conditioning continuous random variables

Definition 3.2.1. Let X be a continuous random variable and let A be an event with P(A) > 0. The
conditional pdf of X is the nonnegative integrable function fX|A satisfying

P(X ∈ B|A) =

∫
B
fX|A(x) dx,

for every B ⊆ R for which the integral exists.

It is the same as an ordinary pdf except that it refers to a universe in which A has occurred. Suppose
now we condition on an event of the form X ∈ A. We have that∫

B
fX|X∈A(x) dx = P(X ∈ B|X ∈ A) =

P(X ∈ B,X ∈ A)

P(X ∈ A)
=

∫
A∩B fX(x) dx

P(X ∈ A)
.

Since this is true for every B ⊆ R for which the integrals exist, it must be that the integrands coincide
on A i.e.,

fX|X∈A(x) =


fX(x)

P(X ∈ A)
if x ∈ A;

0 otherwise.

This means that, within the conditioning set A, the conditional pdf has the same shape as the ordinary
pdf: it is just rescaled by 1/P(X ∈ A) so that

∫
A fX|X∈A(x) dx = 1.

Definition 3.2.2. The conditional expectation of a continuous random variable X is defined as

E(X|A) =

∫ ∞
−∞

xfX|A(x) dx.

We then have the following continuous analogue of Corollary 1.8.3.

Theorem 3.2.3. LetA1, . . . , An be a partition of Ω such that P(Ai) > 0 for each i and letX be a continuous
random variable. Then

(a) fX(x) =
∑n

i=1 P(Ai)fX|Ai(x).

(b) E(X) =
∑n

i=1 P(Ai)E(X|Ai).
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Example 3.2.4. The metro train arrives every 15 minutes starting at 6am. You walk into the station
every morning between 7:10am and 7:30am with the time of arrival in this interval being a uniform
random variable. What is the pdf of the time you have to wait for the first train?

Let X be the time of arrival. We know it is a uniform random variable on the interval between 7:10
and 7:30. Let Y be the waiting time. We want fY (y). As the waiting time depends on whether you
manage to take the 7:15 train or not, we consider the following partition:

A1 = {7 : 10 ≤ X ≤ 7 : 15} A2 = {7 : 15 < X ≤ 7 : 30}.

Conditioned on A1, the arrival time is uniform on the interval 7:10-7:15 and so the waiting time is
uniform on [0, 5]. In other words,

fY |A1
(y) =


1

5
if 0 ≤ y ≤ 5;

0 otherwise.

Similarly, conditioned on A2, the arrival time is uniform on the interval 7:15-7:30 and so the waiting
time is uniform on [0, 15]. In other words,

fY |A2
(y) =


1

15
if 0 ≤ y ≤ 15;

0 otherwise.

By Theorem 3.2.3, we have that

fY (y) = P(A1)fY |A1
(y) + P(A2)fY |A2

(y).

Since X is uniform on the interval 7:10-7:30 of length 20, we know that P(A1) = 5/20 and P(A2) =
15/20. Combining, we obtain

fY (y) =

®
1/10 if 0 ≤ y ≤ 5;

1/20 if 5 < y ≤ 15.

Continuing the analogy with discrete random variables, we would now like to condition on events
of the form Y = y. But we know that if Y is continuous, P(Y = y) = 0. How do we interpret then
probabilities of the form P(X ∈ A|Y = y)? We will make use of the following notion.

Definition 3.2.5. Let X and Y be continuous random variables with joint pdf fX,Y . For any fixed y
with fY (y) > 0, the conditional pdf of X given that Y = y is defined by

fX|Y (x|y) =
fX,Y (x, y)

fY (y)
.

Notice that it agrees with the definition of conditional pmf in the discrete case. Viewing fX|Y (x|y) as
a function of x, it has the same shape as fX,Y . The normalization by fY (y) implies that fX|Y (x|y) is a
legitimate pdf:∫ ∞

−∞
fX|Y (x|y) dx =

∫ ∞
−∞

fX,Y (x, y)

fY (y)
dx =

1

fY (y)

∫ ∞
−∞

fX,Y (x, y) dx =
fY (y)

fY (y)
= 1.
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But how do we interpret fX|Y (x|y)? Fix small δ1 and δ2 and consider the following conditional probabil-
ity:

P(x ≤ X ≤ x+ δ1|y ≤ Y ≤ y + δ2) =
P(x ≤ X ≤ x+ δ1, y ≤ Y ≤ y + δ2)

P(y ≤ Y ≤ y + δ2)

=

∫ x+δ1
x

∫ y+δ2
y fX,Y (x, y) dydx∫ y+δ2
y fY (y) dy

≈
fX,Y (x, y)δ1δ2

fY (y)δ2

= fX|Y (x|y)δ1.

Letting δ2 → 0, we have that P(x ≤ X ≤ x + δ1|Y = y) should approximately be fX|Y (x|y)δ1 for small
δ1. We then make the following definition in the continuous case:

P(X ∈ A|Y = y)
def
=

∫
A
fX|Y (x|y) dx.

Example 3.2.6. We throw a dart at a circular target of radius r. We assume that we always hit the
target and that all points of impact (X,Y ) are equally likely. In other words, we assume that the joint
pdf of X and Y is

fX,Y (x, y) =


1

πr2
if x2 + y2 ≤ r2;

0 otherwise.

What is the conditional pdf fX|Y (x|y)? We first compute the marginal fY (y). By Lemma 3.1.2,

fY (y) =

∫ ∞
−∞

fX,Y (x, y) dx =


0 if |y| > r;∫
x:x2+y2≤r2

1

πr2
dx =

∫ √r2−y2
−
√
r2−y2

1

πr2
dx =

2

πr2

√
r2 − y2 if |y| ≤ r.

Therefore, fX|Y (x|y) = 1

2
√
r2−y2

.

Definition 3.2.7. The conditional expectation E(X|Y = y) is defined as
∫∞
−∞ xfX|Y (x|y) dx.

We have that E(g(X)|Y = y) =
∫∞
−∞ g(x)fX|Y (x|y) dx. Moreover, the following version of the total

expectation theorem holds:

Theorem 3.2.8. Let X and Y be continuous random variables. Then

E(X) =

∫ ∞
−∞

E(X|Y = y)fY (y) dy.

Independence is defined exactly as in the discrete case.

Definition 3.2.9. Two continuous random variablesX and Y are independent if fX,Y (x, y) = fX(x)fY (y)
for each x, y.
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Exactly as in the discrete case, if X and Y are independent, then the events {X ∈ A} and {Y ∈ B} are
independent. Indeed,

P(X ∈ A, Y ∈ B) =

∫
X∈A

∫
Y ∈B

fX,Y (x, y) dydx

=

∫
X∈A

∫
Y ∈B

fX(x)fY (y) dydx

=

∫
X∈A

fX(x)

∫
Y ∈B

fY (y) dydx

=

Å∫
Y ∈B

fY (y) dy

ãÅ∫
X∈A

fX(x) dx

ã
= P(Y ∈ B)P(X ∈ A).

The following properties, which were shown for discrete random variables, remain true in the con-
tinuous case. Proofs are similar and hence omitted.

Lemma 3.2.10. LetX and Y be independent continuous random variables and let g and h be two functions
such that g(X) and h(Y ) are continuous. The following hold:

• g(X) and h(Y ) are independent;

• E(XY ) = E(X)E(Y );

• E(g(X)h(Y )) = E(g(X))E(h(Y ));

• var(X + Y ) = var(X) + var(Y ).

3.3 Normal random variables

Definition 3.3.1. A continuous random variable X is normal if it has pdf given by

fX(x) =
1√
2πσ

e−
(x−µ)2

2σ2 ,

for some parameters µ, σ with σ > 0. If µ = 0 and σ = 1, X is called standard normal.

It can be shown that ∫ ∞
−∞

1√
2πσ

e−
(x−µ)2

2σ2 dx = 1

and so fX(x) is a legitimate pdf. The parameter µ is the “center” of the density. Indeed, fX(x) is
symmetric around µ i.e., fX(µ + x) = fX(µ − x). The parameter σ is the “spread” of the density. The
graph of fX(x) has a characteristic bell shape symmetric around the line x = µ.

The importance of the normal random variable is mainly due to the Central limit theorem. Loosely
speaking, it asserts that the distribution of the sum of a large number of i.i.d. random variables is
approximated by the normal distribution.

Lemma 3.3.2. If X is normal, then E(X) = µ and var(X) = σ2.

Theorem 3.3.3. Normality is preserved by linear transformations. Namely, if X is normal with mean µ
and variance σ2, then Y = aX + b is normal with E(Y ) = aµ+ b and var(Y ) = a2σ2.
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Proof. We look for the pdf of Y and obtain it by differentiating the distribution function. Suppose that
a > 0 (the other case is similar).

FY (y) = P(Y ≤ y) = P(aX + b ≤ y) = P
Å
X ≤ y − b

a

ã
= FX

Å
y − b
a

ã
.

By the Chain rule and using the fact that X is normal with mean µ and variance σ2,

fY (y) =
dFY
dy

(y) =
1

a
· fX
Å
y − b
a

ã
=

1

a
· 1√

2πσ
e−

((y−b)/a−µ)2

2σ2 =
1√

2πaσ
e−

(y−b−aµ)2

2a2σ2 ,

as claimed.

If X is normal, we have that

P(X ≤ x) =

∫ x

−∞
fX(x) dx =

∫ x

−∞

1√
2πσ

e−
(x−µ)2

2σ2 dx.

Unfortunately, the function e−x
2

has no elementary antiderivative i.e., its antiderivative cannot be ex-
pressed as a sum, product, composition of finitely many polynomials, rational functions, trigonometric
and exponential functions, and their inverse functions. On the other hand, in order to compute probabil-
ities involving the normal random variable, we need to somehow compute the integral above. The lack
of an elementary antiderivative is bypassed by computing approximations of the integral above, in the
case µ = 0 and σ = 1, via numerical integration. These approximated values are then stored in tables
(see Figure 3.2) and allow to determine an approximate value of P(X ≤ x), for each x. Notice that the
distribution function FX(x) = P(X ≤ x) of a standard normal is usually denoted by Φ(x).

But in order to use these tables, how do we pass from a normal random variable X with parameters
µ and σ to a standard normal? The answer is already in Theorem 3.3.3: The random variable Y = X−µ

σ
is normal with mean µ = 0 and variance σ2 = 1. We can then use this linear transformation and its
inverse to jump from generic normal to standard normal and vice versa.

Example 3.3.4. The annual snowfall at a particular location is modelled as a normal random variable
with mean µ = 60 (in inches) and σ = 20. What is the probability that this year’s snowfall will be at
least 80 inches?

Let X be the snow accumulation. We need to compute P(X ≥ 80) = 1 − P(X ≤ 80). To compute
the latter, since we need to resort to the tables, we first pass to the standard normal random variable
Y = X−60

20 . We have that P(X ≤ 80) = P(20Y + 60 ≤ 80) = P(Y ≤ 1). We then check the approximate
value of P(Y ≤ 1) in the tables: it is 0.8413 (see Figure 3.2).

Example 3.3.5. A binary message is transmitted as a signal which is either−1 or 1. The communication
channel corrupts the transmission with additive normal noise with mean µ = 0 and variance σ2. The
receiver concludes that the signal −1 (or 1) was transmitted if the value received is smaller than 0 (or at
least 0). What is the probability of an error?

Let N be the noise and S be the signal. We have an error if −1 is transmitted and N ≥ 1 (as this
gives N + S ≥ 0) or if 1 is transmitted and N < −1 (as this gives N + S < 0). We want to compute
P(N ≥ 1) and P(N < −1). As N is normal with µ = 0, we know that these two values are the same. We
then pass to the standard normal N ′ = N−µ

σ = N
σ and compute

P(N ≥ 1) = 1− P(N < 1) = 1− P(σN ′ < 1) = 1− P(N ′ < 1/σ).
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Figure 3.2: Table storing values of Φ(z).

3.4 Moment generating functions

We now introduce moment generating functions. These functions are useful in several different ways.
Among others, they provide an easy way of calculating the moments of a random variable, they provide
tools for dealing with sums of independent random variables and for proving limit theorems, such as the
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Central limit theorem.

Definition 3.4.1. The moment generating function of a random variable X is the function MX(s) =
E(esX). Notice that MX is defined only for those values of s for which E(esX) exists i.e., E(esX) ∈ R.

Remark 3.4.2. By LOTUS, MX can be written as follows: If X is discrete with pmf fX(x),

MX(s) =
∑
x

esxfX(x)

and if X is continuous with pdf fX(x),

MX(s) =

∫ ∞
−∞

esxfX(x) dx.

Remark 3.4.3. Notice that MX is always defined at 0: MX(0) = E(1) = 1. In fact, MX is always defined
in a neighborhood of 0. Indeed, suppose that MX(s0) exists for some s0 > 0 and let s ∈ [0, s0]. On
{X < 0}, we have that esX ≤ 1, and on {X ≥ 0}, we have that esX ≤ es0X . Therefore, 0 ≤ esX ≤ 1+es0X

and so E(esX) ≤ 1 + E(es0X) <∞. Similarly, if MX(s0) exists for some s0 < 0, then MX(s) exists for all
s ∈ [s0, 0].

Example 3.4.4. Compute the mgf of a Poisson random variable X with parameter λ. Recall that X has
pmf fX(x) = λxe−λ

x! , for x = 0, 1, 2, . . . . Therefore,

MX(s) =
∞∑
x=0

esx
λxe−λ

x!
= e−λ

∞∑
x=0

(esλ)x

x!
= e−λee

sλ = eλ(es−1).

Example 3.4.5. Compute the mgf of a normal random variable X with mean µ and variance σ2. Let us
first consider the standard normal Y = X−µ

σ and suppose for a moment we know the mgf of Y . We can
compute the mgf of X by recalling properties of expectation:

MX(s) = E(es(σY+µ)) = E(esσY · esµ) = esµE(esσY ) = esµMY (sσ).

We then compute the mgf of the standard normal Y :

MY (s) =

∫ ∞
−∞

esy
1√
2π
e−

y2

2 dy

=
1√
2π

∫ ∞
−∞

e−
1
2

(y2−2sy) dy

=
e
s2

2

√
2π

∫ ∞
−∞

e−
1
2

(y2−2sy+s2) dy

=
e
s2

2

√
2π

∫ ∞
−∞

e−
1
2

(y−s)2 dy

= e
s2

2 ,

where the last equality follows from the fact that we are integrating over the real line the pdf 1√
2π
e−

1
2

(y−s)2

of a normal random variable with parameters µ = s and σ = 1. This integral has then to be 1. Combining
the two results above, we have that the mgf of X is

MX(s) = e
s2σ2

2
+sµ.
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If we know the mgf of X, we can compute its moments. Hence the suggestive name.

Theorem 3.4.6. The n-th derivative with respect to s of MX evaluated at 0 gives the n-th moment E(Xn).

The proof of this result is non-trivial and we just provide intuition for the case n = 1 and X continuous.
We first differentiate both sides of the equality

MX(s) =

∫ ∞
−∞

esxfX(x) dx.

We obtain
dMX

ds
(s) =

d

ds

∫ ∞
−∞

esxfX(x) dx

=

∫ ∞
−∞

d

ds
esxfX(x) dx

=

∫ ∞
−∞

xesxfX(x) dx.

Evaluating at s = 0, we obtain

E(X) =
dMX

ds
(0).

Notice that the interchange of integration and differentiation is not allowed in general and requires
justification. The reason we can do this under our assumptions comes from a powerful theorem in
Analysis, called the Dominated convergence theorem (hand-waving here).

Exercise 3.4.7. Compute mean and variance of a normal random variable using its mgf.

The following important theorem asserts that random variables are completely determined by their
moment generating functions.

Theorem 3.4.8 (Inversion theorem). Suppose that MX(s) exists for all s ∈ [−a, a], where a > 0. Then
MX determines uniquely the distribution function of the random variable X. In particular, if MX(s) =
MY (s) for all s ∈ [−a, a], then X and Y have the same distribution function.

Mgf are particularly useful when dealing with sums of independent random variables. Let X and Y
be two independent random variables and let W = X + Y . We have that

MW (s) = E(esW ) = E(es(X+Y )) = E(esX · esY ).

But for a fixed value of s, esX and esY are independent random variables and so

MW (s) = E(esX · esY ) = E(esX)E(esY ) = MX(s)MY (s).

Similarly, if X1, . . . , Xn are independent random variables and W = X1 + · · ·+Xn, then

MW (s) = MX1(s) · · ·MXn(s).

Example 3.4.9. LetX and Y be independent normal random variables with means µx, µy and variances
σ2
x, σ

2
y , respectively. Let W = X + Y . By Example 3.4.5 and the previous paragraph, we have that

MW (s) = e
s2σ2x

2
+sµx · e

s2σ2y
2

+sµy = e
s2(σ2x+σ

2
y)

2
+s(µx+µy).

This implies thatW has the same mgf as a normal with mean µx+µy and variance σ2
x+σ2

y . Theorem 3.4.8
then implies that W has to be a normal with mean µx + µy and variance σ2

x + σ2
y .

Exercise 3.4.10. Using moment generating functions, show that the sum of two independent Poisson ran-
dom variables with parameters λ1 and λ2 is a Poisson with parameter λ1 + λ2. We already showed this in
Example 1.9.3.
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3.5 Central limit theorem

Let X1, X2, . . . be a sequence of i.i.d. random variables with mean µ and variance σ2 and let Sn =
X1 + · · ·+Xn. The Weak law of large numbers tells us that the distribution of Sn/n concentrates around
its mean µ as n becomes large. The Central limit theorem goes further and quantifies the behavior of
the “fluctuations” of Sn around its mean nµ. It is in fact another statement about convergence, where
the mode of convergence involved is the following:

Definition 3.5.1. Let X,X1, X2, . . . be a sequence of random variables (not necessarily defined on the
same probability space) with distribution functions F, F1, F2, . . ., respectively. {Xn} converges to X in

distribution, denoted Xn
d−→ X, if for each x such that F is continuous at x, Fn(x)→ F (x) as n→∞.

Remark 3.5.2. Convergence in distribution is really about convergence of distributions rather than con-
vergence of random variables.

We have already seen several examples of convergence in distribution in disguise:

Example 3.5.3. Let {Xn} be a sequence of binomial random variables whereXn has parameters (n, λ/n).
Then {Xn} converges in distribution to the Poisson random variable with parameter λ (see Exam-
ple 1.4.16).

Let {Xn} be a sequence of geometric random variables where Xn has parameter pn. If pn → 0 as
n → ∞, then {pnXn} converges in distribution to the exponential random variable with parameter 1
(see the discussion after Example 3.0.7).

Convergence in distribution is the weakest form of convergence we have introduced, as the following
results show.

Lemma 3.5.4. If Xn
p−→ X, then Xn

d−→ X.

Example 3.5.5. Let X and Y be random variables having the same distribution function and such that
P(X = Y ) < 1. Letting Xn = X for each n ≥ 1, the sequence {Xn} clearly converges to Y in distribution
but not in probability.

Although convergence in distribution is weaker than convergence in probability, there is a partial
converse in the case the limit is deterministic:

Exercise 3.5.6. Show that if {Xn} converges in distribution to the constant random variable c, then {Xn}
converges in probability to c.

Recall that we are interested in studying the behavior of the deviations of Sn from its mean nµ. We
rescale Sn − E(Sn) as follows:

Zn =
Sn − E(Sn)√

var(Sn)
=
X1 + · · ·+Xn − nµ

σ
√
n

.

Theorem 3.5.7 (Central limit theorem). Let X1, X2, . . . be a sequence of i.i.d. random variables with
mean µ and variance σ2 and let

Zn =
X1 + · · ·+Xn − nµ

σ
√
n

.

Then {Zn} converges in distribution to the standard normal. In other words, limn→∞ P(Zn ≤ z) = Φ(z) for
any z, where

Φ(z) =

∫ z

−∞

1√
2π
e−

x2

2 dx.
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Proof. In order to show convergence in distribution, we will make use of the following sufficient condi-
tion in terms of the moment generating functions:

Theorem 3.5.8. Suppose Y andX1, X2, . . . are random variables such thatMY (s) andMX1(s),MX2(s), . . .

exist for all s ∈ [−a, a], for some a > 0. If MXn(s)→MY (s) as n→∞ for all s ∈ [−a, a], then Xn
d−→ Y .

Back to the proof, let Yi = Xi − µ. Notice that E(Yi) = 0 and var(Yi) = E(Y 2
i )− E(Yi)

2 = E(Y 2
i ). Let Y

be a random variable with the same distribution as the Yi’s. We first rewrite Zn as a sum:

Zn =
X1 + · · ·+Xn − nµ

σ
√
n

=
X1 − µ
σ
√
n

+ · · ·+ Xn − µ
σ
√
n

=
Y1

σ
√
n

+ · · ·+ Yn
σ
√
n

But

M Yi
σ
√
n

(t) = E
(
e
t
Yi
σ
√
n

)
= MY

Å
t

σ
√
n

ã
and so, since Y1

σ
√
n
, . . . , Yn

σ
√
n

are independent,

MZn(t) = M Y1
σ
√
n

(t) · · ·M Yn
σ
√
n

(t) =

Å
MY

Å
t

σ
√
n

ããn
.

Since the function MY is differentiable twice at 0 (as the Yi’s admit mean and variance), Taylor’s
theorem tells us that, for h→ 0,

MY (h) = MY (0) + hM ′Y (0) +
h2

2
M ′′Y (0) + o(h2)

= 1 + hE(Y ) +
h2

2
var(Y ) + o(h2)

= 1 +
h2σ2

2
+ o(h2),

where o(h2) denotes a function which goes to 0 faster than h2 as h→ 0. Using the Taylor approximation
above for n→∞, we obtain

MY

Å
t

σ
√
n

ã
= 1 +

t2

2n
+ o

Å
t2

σ2n

ã
and so

lim
n→∞

MZn(t) = lim
n→∞

Å
1 +

t2

2n

ãn
= et

2/2,

where the last equality follows from the fact that (1 + an
n )n → ea for any sequence an → a.

Since MZ(t) = et
2/2 is the mgf of the standard normal (Example 3.4.5), Theorem 3.5.8 then implies

that {Zn} converges in distribution to the standard normal.

The Central limit theorem has several important consequences:

It first tells us that the “fluctuations” of Sn around its mean nµ are of order
√
n. Moreover, the

behavior of these fluctuations is universal: no matter what the distribution of the Xi’s is, the
asymptotic distribution of the “fluctuations” is standard normal.

It also answers the question: How does Sn behave for large n?
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For n large, probabilities of the form P(Sn ≤ c) can be approximated as follows:

1. Compute mean nµ and variance nσ2 of Sn.

2. Compute z = c−nµ
σ
√
n

.

3. Use the approximation P(Sn ≤ c) ≈ Φ(z), where the value of Φ(z) can be found from tables.

Let us justify these steps. For large n, the Central limit theorem implies that

Φ(z) ≈ P(Zn ≤ z) = P
Å
Sn − nµ
σ
√
n
≤ z
ã

= P(Sn ≤ zσ
√
n+ nµ).

Therefore, letting z as in 2., we obtain the approximation in 3.

Example 3.5.9. The number of students X who are going to fail in the exam is a Poisson random
variable with mean 100. What is the probability that at least 120 students will fail?

Since X is Poisson with mean 100 (and so λ = 100), we know that the desired probability is

P(X ≥ 120) = 1− P(X ≤ 119) = 1−
119∑
k=0

e−100100k

k!
.

If we are just interested in an approximate value of this complicated sum, we can use the procedure
described above. We can express X as a sum of 100 independent Poisson random variables X1, . . . , X100,
each with mean 1 and variance 1 (for example, by Exercise 3.4.10). Checking Figure 3.2, we then have
that

P(X ≤ 119) ≈ Φ

Å
119− 100 · 1

1 ·
√

100

ã
= Φ(1.9) = 0.9713.

Example 3.5.10. We load on a plane 100 packages whose weights are independent random variables
uniformly distributed between 5kg and 50kg. What is the probability that the total weight will exceed
3000kg?

Let S100 be the sum of weights of the 100 packages. We compute an approximate value for the
desired probability P(S100 > 3000) by following the procedure above. We first need mean and variance
of a uniform random variable on [5, 50]. In general, mean and variance of a uniform random variable X
on [a, b] are E(X) = a+b

2 and var(X) = (a−b)2
12 . You can compute these in two ways: using the definitions

of mean and variance or using moment generating functions. In our case, µ = 27.5 and σ2 = 168.75.
Letting z = 3000−100·27.5√

168.75·100
= 1.92, we get P(S100 ≤ 3000) ≈ Φ(1.92) = 0.9726.

Exercise 3.5.11. Compute mean and variance of a uniform random variable X on [a, b] using moment
generating functions.

Exercise 3.5.12. A machine processes parts one at a time. The processing times of different parts are
independent random variables uniformly distributed on [1, 5]. Find an approximate value for the probability
that the number of parts processed within 320 time units is at least 100.



Chapter 4

Poisson Processes

A Poisson process is a stochastic process used to model the occurrence, or arrival, of events over a
continuous interval of time. There are several ways to define a Poisson process. One can focus, for
example,

1. on the number of events that occur in fixed intervals;

2. on the times at which events occur and the times between occurrences.

We begin with 1.

Definition 4.0.1. A sequence {N(s) : s ≥ 0} of random variables indexed by the continuous parameter
s is a Poisson process if it satisfies the following:

(i) N(0) = 0;

(ii) N(t+ s)−N(s) is Poisson with parameter λt, where λ is called the rate of the Poisson process;

(iii) N(t) has independent increments i.e., if t0 < t1 < · · · < tn, then N(t1) − N(t0), . . . , N(tn) −
N(tn−1) are independent random variables.

Remark 4.0.2. Notice that a Poisson process consists of uncountably many random variables and is an
example of a continuous-time stochastic process, as opposed to the discrete-time Markov chains we
have seen in Chapter 2.

The typical use of a Poisson process is as a model for the number of arrivals N(s) in time [0, s] to a
certain facility, say an ATM. We can then think of (ii) as saying that the average rate at which customers
arrive is constant and of (iii) as saying that the number of customers arriving during a certain time
interval does not affect the number of customers arriving during a different time interval. Why are these
assumptions reasonable? Consider the following situation. Suppose that each of n students flips a coin,
with probability λ/n of heads, to decide if he will go to a fixed ATM between 12:17 and 12:18. The
probability that the number of students X going to the ATM during this interval is exactly k is

P(X = k) =

Ç
n

k

åÅ
λ

n

ãkÅ
1− λ

n

ãn−k
.

But we have seen that if n→∞, thenÇ
n

k

åÅ
λ

n

ãkÅ
1− λ

n

ãn−k
→ e−λ

λk

k!
.

105
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Example 4.0.3. Starting at 6 a.m., customers arrive at a bakery according to a Poisson process at the
rate of 30 customers per hour. What is the probability that more than 65 customers arrive between 9
and 11 a.m.? We let s = 0 represent 6 a.m. The desired probability is then P(N(5)−N(3) > 65). Since
N(5)−N(3) is a Poisson with parameter 30 · 2 = 60, we have

P(N(5)−N(3) > 65) = 1− P(N(3)−N(2) ≤ 65) = 1−
65∑
k=0

e−60 60k

k!
.

We can now construct Poisson processes in another way, following 2, with emphasis on the times of
arrivals. The fact that these two definitions are equivalent is a nontrivial result. In the new definition,
the random variables N(s) are built as follows:

Definition 4.0.4. Let τ1, τ2, . . . be independent exponential random variables with parameter λ. Let
Tn = τ1 + · · ·+ τn for n ≥ 1, T0 = 0 and let N(s) = max{n : Tn ≤ s}.

The τn’s can be thought of as the times between arrivals of customers (interarrival times), say to
our ATM, and so Tn is the arrival time of the n-th customer and N(s) is the number of arrivals up to time
s.

T1 T2 T3 T4 T50

τ1 τ2 τ3 τ4 τ5

Figure 4.1: With the interpretation above, if T4 ≤ s < T5, then N(s) = 4.

We now show that N(s), as defined in Definition 4.0.4, satisfies (i), (ii), (iii) in Definition 4.0.1 and
so gives indeed rise to a Poisson process. (i) is trivial. To show (ii), we will in fact show the following:

Proposition 4.0.5. N(s) is a Poisson random variable with parameter λs.

The proof of Proposition 4.0.5 requires several auxiliary results. The key is establishing the nature of
the random variables Tn. They will turn out to be Gamma random variables:

Definition 4.0.6. A continuous random variable X is Gamma with parameters (α, β), for some α, β >
0, if its pdf is given by

fX(x) =


1

Γ(α)βα
xα−1e−x/β if x ≥ 0;

0 otherwise.

where Γ(α) is the Gamma function defined by

Γ(α) =

∫ ∞
0

tα−1e−t dt.

Remark 4.0.7. The Gamma function extends the factorial function to positive real numbers. Namely, if
α is a positive integer, then Γ(α) = (α− 1)!. Notice also that if α = 1, then the Gamma random variable
with parameters (α, β) = (1, β) is an exponential with parameter 1/β and so the Gamma random variable
generalizes the exponential random variable.

Comparing the mgf of Tn with that of the Gamma random variable, we obtain the following:

Lemma 4.0.8. Tn is a Gamma random variable with parameters (n, 1/λ).
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Proof. Let us first compute the moment generating function of the Gamma random variable X with
parameters (α, β). Suppose that t < 1/β.

MX(t) =

∫ ∞
0

etx
1

Γ(α)βα
xα−1e−x/β dx =

1

Γ(α)βα

∫ ∞
0

xα−1e
−x( 1−βt

β
)

dx.

We now make the substitution x(1−βt
β ) = u and 1−βt

β dx = du. We obtain

MX(t) =
1

Γ(α)βα

∫ ∞
0

uα−1

Å
β

1− βt

ãα−1

e−u
β

1− βt
du =

Å
1

1− βt

ãα
.

Let us now compute the moment generating function of the exponential random variable Y with param-
eter λ.

MY (t) =

∫ ∞
0

etxλe−λx dx = λ

∫ ∞
0

e−x(λ−t) dx =
λ

λ− t
=

1

1− t/λ
.

Since Tn is a sum of n independent exponential random variables with parameter λ, we have that

MTn(t) =

Å
1

1− t/λ

ãn
.

Using the Inversion theorem, we then conclude that Tn is a Gamma random variable with parameters
(n, 1/λ).

We are finally ready to show Proposition 4.0.5. Recall that we are using the definition of N(s) as in
Definition 4.0.4.

Proof of Proposition 4.0.5. Observe first that N(s) = n if and only if Tn ≤ s < Tn+1. Moreover,

P(N(s) = n) = P(N(s) ≥ n)− P(N(s) ≥ n+ 1).

But the event {N(s) ≥ n} (“up to time s we have at least n arrivals”) coincides with the event {Tn ≤ s}
(“the n-th arrival happens before time s”) and so P(N(s) ≥ n) = P(Tn ≤ s), where Tn = τ1 + · · ·+ τn is
a sum of n independent exponential random variables with parameter λ.

We know use the following equality which holds for all nonnegative real numbers x and all positive
integers n, and which can be proved by showing that the derivatives of the two sides are equal:∫ x

0

λn

(n− 1)!
un−1e−λu du =

∞∑
i=n

e−λx
(λx)i

i!
.

Using the equality above and Lemma 4.0.8, we obtain

P(Tn ≤ s) =

∫ s

0

λn

(n− 1)!
un−1e−λu du =

∞∑
i=n

e−λs
(λs)i

i!
, (4.1)

for each n ≥ 1. Moreover, if n = 0, then P(T0 ≤ s) = P(N(s) ≥ 0) = 1 and
∞∑
i=0

e−λs
(λs)i

i!
= 1

(pmf of Poisson) and so (4.1) holds for each n ≥ 0. But then

P(N(s) = n) = P(Tn ≤ s)− P(Tn+1 ≤ s) =

∞∑
i=n

e−λs
(λs)i

i!
−

∞∑
i=n+1

e−λs
(λs)i

i!
= e−λs

(λs)n

n!
.

This implies that N(s) is indeed a Poisson with parameter λs.
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Using Proposition 4.0.5, it can then be shown that that (ii) and (iii) in Definition 4.0.1 hold as
well: If 0 = t0 < t1 < t2 < · · · < td, then N(ti) − N(ti−1) is Poisson with parameter λ(ti − ti−1) and
N(t1)−N(t0), N(t2)−N(t1), . . . , N(td)−N(td−1) are independent. We will not show this, but just notice
that N(t1)−N(t0) = N(t1) is indeed Poisson with parameter λ(t1 − t0) = λt1.

It can also be shown that Definition 4.0.1 implies Definition 4.0.4 and so the two are equivalent. This
means that any property obtained from one definition holds with the other. Let us just observe (using
Definition 4.0.1) the special case that the first interarrival time τ1 is indeed exponential with parameter
λ. We have that τ1 > t if and only if N(t) = 0 and so P(τ1 > t) = P(N(t) = 0) = e−λt.

Example 4.0.9. Let {N(s) : s ≥ 0} be a Poisson process where the interarrival times τi are exponential
with parameter 5. Compute P(N(3) = 12) and P(N(2) = 3, N(5) = 4).

We know that N(3) = N(3)−N(0) is Poisson with parameter 3 · 5 = 15. Therefore,

P(N(3) = 12) = e−15 1512

12!
.

As for the second question, N(2) and N(5) might not be independent, but we use the fact that the
increments N(2) − N(0) = N(2) and N(5) − N(2) are. Clearly, the event {N(2) = 3, N(5) = 4} is the
same as the event {N(2) = 3, N(5)−N(2) = 1} and so

P(N(2) = 3, N(5) = 4) = P(N(2) = 3, N(5)−N(2) = 1)

= P(N(2) = 3)P(N(5)−N(2) = 1)

= e−10 103

3!
· e−15 151

1!
.

Example 4.0.10. Consider a Poisson process with rate λ. Compute

(a) E(time of 10th arrival).

(b) P(10th arrival occurs two or more time units after 9th).

(c) P(10th arrival occurs later than time 20).

(d) P(there are two arrivals in [1, 4] and three arrivals in [3, 5]).

(a) We want E(T10). We know that T10 = τ1+· · ·+τ10, where each τi is exponential with parameter λ.
We know that E(τi) = 1/λ and so linearity of expectation implies that E(T10) = 10/λ. Let us obtain again
the mean of the exponential, this time using its moment generating function MY (t) = 1

1−t/λ computed
in the proof of Lemma 4.0.8. Since

M ′Y (t) =
1

λ

Å
1− t

λ

ã−2

,

we obtain again E(Y ) = M ′Y (0) = 1/λ. Another way of computing E(T10) is by recalling that T10 is a
Gamma random variable with parameters (10, 1

λ) and using the moment generating function MT10(t) we
computed in the proof of Lemma 4.0.8.

(b) We want P(T10 ≥ T9 + 2). We have

P(T10 ≥ T9 + 2) = P(T10 − T9 ≥ 2) = P(τ10 ≥ 2) = e−2λ,

where in the last equality we recalled (3.1).
(c) We want P(T10 > 20). By Lemma 4.0.8, T10 is Gamma with parameter (10, 1/λ). Recalling the

pdf of the Gamma random variable, we obtain

P(T10 > 20) =

∫ ∞
20

λ10

9!
u9e−λu du.
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Alternatively, observe that the event {T10 > 20} is the same as the event {N(20) < 10}. Since N(20) is
Poisson with parameter 20λ,

P(T10 > 20) = P(N(20) < 10) =

9∑
j=0

e−20λ (20λ)j

j!
.

(d) We want P(N(4) − N(1) = 2, N(5) − N(3) = 3). Since the intervals [1, 4] and [3, 5] overlap, we
cannot use the independent increments property directly, so we have first to reduce to non-overlapping
intervals. We do this by conditioning on the number of arrivals in the intersection [3, 4], which can be 0,
1 or 2.

1 2 3 4 5

2 arrivals

3 arrivals

By the law of total probability,

P(2 in [1, 4], 3 in [3, 5]) =
2∑

k=0

P(2 in [1, 4], 3 in [3, 5] | k in [3, 4])P(k in [3, 4])

=

2∑
k=0

P(2− k in [1, 3], 3− k in [4, 5])P(k in [3, 4])

=
2∑

k=0

P(N(3)−N(1) = 2− k,N(5)−N(4) = 3− k)P(N(4)−N(3) = k)

=
2∑

k=0

P(N(3)−N(1) = 2− k)P(N(5)−N(4) = 3− k)P(N(4)−N(3) = k)

=

2∑
k=0

e−2λ (2λ)2−k

(2− k)!
· e−λ λ3−k

(3− k)!
· e−λλ

k

k!
.

Example 4.0.11. Consider a Poisson process with rate λ. Suppose we know that a single event occured
in [0, s]. What is the probability that it occured before time t?

We need to compute P(T1 ≤ t|T1 ≤ s), where 0 < t < s. We have

P(T1 ≤ t|T1 ≤ s) = P(N(t) = 1|N(s) = 1)

=
P(N(t) = 1, N(s) = 1)

P(N(s) = 1)

=
P(N(t)−N(0) = 1, N(s)−N(t) = 0)

P(N(s) = 1)

=
P(N(t) = 1)P(N(s)−N(t) = 0)

P(N(s) = 1)

=
e−λtλt · e−λ(s−t)

e−λsλs

=
t

s
,
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where the third equality follows from the independence of the increments N(t) − N(0) = N(t) and
N(t)−N(s). We observe that the conditional distribution is uniform (see Example 1.4.11). For example,
suppose we heard that a football team won a match 1-0. Is it more likely that the goal was scored in the
first half or second half? Letting T1 to be the time the goal was scored (and under the assumption T1 is
as in Definition 4.0.4), the goal is equally likely to have been scored in the first half or second half.

Exercise 4.0.12. Let {N(t) : t ≥ 0} be a Poisson process with rate λ = 3.

1. What is the probability that τ3 > 6 given that N(5) < 2?

2. What is the expected time of the 5-th arrival?

3. Compute E(N(4)−N(2)|N(1) = 3)

Exercise 4.0.13. Let {N(t) : t ≥ 0} be a Poisson process with rate λ. Show that E(N(t)N(t + s)) =
λt+ (λt)2 + λsλt.

4.1 Compound Poisson processes

We now associate i.i.d. random variables Yi with each arrival. Independent means that the Yi’s and the
Ti’s are all independent. For example,

(a) At a drive-thru cars arrive between noon and 1:00pm according to a Poisson process. We let Yi to
be the number of people in the i-th car.

(b) Messages arrive at a computer to be transmitted across the Internet. Arrival times can be modeled
by a Poisson process. We let Yi to be the size in bytes of the i-th message.

We can consider the sum of the Yi’s up to time t:

S(t) = Y1 + Y2 + · · ·+ YN(t),

where we set S(t) = 0 if N(t) = 0. In (a), S(t) is the number of customers up to time t, whereas in
(b), S(t) is the total amount of bytes received up to time t. What are mean and variance of S(t)? The
following more general results allow to compute mean and variance of the sum of a random number of
i.i.d. random variables.

Theorem 4.1.1 (Wald’s equation). Let Y1, Y2, . . . be i.i.d. discrete random variables, let N be an inde-
pendent (of the Yi’s) nonnegative integer-valued random variable and let S = Y1 + · · · + YN , where S = 0
if N = 0.

(i) If E(|Yi|),E(N) <∞, then E(S) = E(N)E(Yi).

(ii) If E(Y 2
i ),E(N2) <∞, then var(S) = E(N)var(Yi) + var(N)E(Yi)

2.

(iii) If N is Poisson with parameter λ, then E(S) = λE(Yi) and var(S) = λE(Y 2
i ).

Proof. (i) We use the Total expectation theorem (Theorem 1.8.2):

E(S) =

∞∑
n=0

E(S|N = n)P(N = n) =

∞∑
n=0

E(Y1 + · · ·+ Yn)P(N = n)

=

∞∑
n=0

nE(Yi)P(N = n) = E(Yi)

∞∑
n=0

nP(N = n) = E(Yi)E(N).
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(ii) Recall that var(S) = E(S2)− E(S)2. Moreover, again by the Total expectation theorem,

E(S2) =
∞∑
n=0

E(S2|N = n)P(N = n) =
∞∑
n=0

E((Y1 + · · ·+ Yn)2)P(N = n).

But since Y1, Y2, . . . are independent,

nvar(Yi) = var(Y1 + · · ·+ Yn) = E((Y1 + · · ·+ Yn)2)− E(Y1 + · · ·+ Yn)2

= E((Y1 + · · ·+ Yn)2)− n2E(Yi)
2.

Using the latter equality in the formula above, we obtain

E(S2) =

∞∑
n=0

(nvar(Yi) + n2E(Yi)
2)P(N = n) = var(Yi)

∞∑
n=0

nP(N = n) + E(Yi)
2
∞∑
n=0

n2P(N = n)

= var(Yi)E(N) + E(Yi)
2E(N2),

where in the last equality we used LOTUS. Therefore, using (i),

var(S) = var(Yi)E(N) + E(Yi)
2E(N2)− E(Yi)

2E(N)2 = var(Yi)E(N) + E(Yi)
2var(N).

(iii) Since N is Poisson, we know that E(N) = var(N) = λ and so, by (i), E(S) = λE(Yi), and by (ii),

var(S) = λvar(Yi) + λE(Yi)
2 = λE(Y 2

i ).

Example 4.1.2. The number of customers at a shop in a day is Poisson with mean 81 and each customer
spends an average of $8 with a standard deviation of $6. What is the mean revenue? What is the variance
of the revenue?

Let Yi be the amount spent by the i-th customer and let N be the number of customers. We want to
compute E(S) and var(S), where S = Y1+· · ·+YN . We know that E(Yi) = 8, var(Yi) = 62 and E(N) = 81.
Therefore, E(S) = E(N)E(Yi) = 81 · 8 and var(S) = E(N)var(Yi) + var(N)E(Yi)

2 = 81 · 36 + 81 · 64.

4.2 Thinning

Thinning is the operation of splitting a Poisson process into several ones using the associated Yi’s. Let
Nj(t) be the number of i ≤ N(t) such that Yi = j. For example, in (a), Nj(t) is the number of cars with
exactly j people arrived at the drive-thru up to time t. Notice that

N(t) =
∑
j

Nj(t),

where the sum runs through all the values j taken by the i.i.d. random variables Y1, Y2, . . .. For each
value j of Yi we can then consider the sequence of random variables {Nj(t) : t ≥ 0}.

Consider for simplicity the case in which Yi takes exactly two values. Each arrival can then be
classified, independent of the other arrivals, of type 1 with probability p or of type 2 with probability
1 − p. We then have that N(t) = N1(t) + N2(t). The nice feature of thinning is that we end up with
independent Poisson processes:

Theorem 4.2.1. {Nj(t) : t ≥ 0} are independent Poisson processes with rate λP(Yi = j). Independent
means that, for any t0 < · · · < tk, the families {N1(ti) : 0 ≤ i ≤ k}, . . . , {Nn(t`) : 0 ≤ ` ≤ k} are
independent.
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Informal proof. For simplicity, we consider again the case where each Yi takes two values and hence we
have arrivals of type 1, with probability p, and of type 2, with probability 1 − p. Observe that, given
N(t) = n+m, N1(t) is Binomial with parameters (n+m, p). Therefore,

P(N1(t) = n,N2(t) = m) = P(N1(t) = n,N2(t) = m|N(t) = n+m)P(N(t) = n+m)

=

Ç
n+m

n

å
pn(1− p)m · e−λt (λt)n+m

(n+m)!

=
(n+m)!

n!m!
pn(1− p)m · e−λt (λt)n+m

(n+m)!

= e−λtpeλtp · e−λt (λtp)
n(λt(1− p))m

n!m!

= e−λtp
(λtp)n

n!
· e−λt(1−p) (λt(1− p))m

m!
.

The above hints at the fact that N1(t) is a Poisson with parameter λtp, that N2(t) is a Poisson with
parameter λt(1− p) and that N1(t) and N2(t) are independent.

Example 4.2.2. A fisherman catches fish at times of a Poisson process with rate 2 per hour. 40% of fish
is salmon and 60% is trout. What is the probability that he will catch exactly one salmon and exactly
two trouts if he fishes for 2.5 hours?

As we want to distinguish between salmons and trouts, we apply thinning. Let Ns(t) be the number
of salmons fished up to time t and Nt(t) be the number of trouts fished up to time t. Theorem 4.2.1
tells us that {Ns(t) : t ≥ 0} and {Nt(t) : t ≥ 0} are independent Poisson processes with rates 2 · 40

100 and
2 · 60

100 , respectively. This implies that Ns(t) is a Poisson random variable with parameter 0.8t and Nt(t)
is a Poisson random variable with parameter 1.2t As the two are independent, the probability we are
interested in is

P(Ns(2.5) = 1, Nt(2.5) = 2) = P(Ns(2.5) = 1)P(Nt(2.5) = 2) = e−2 21

1!
· e−3 32

2!
= 9e−5.

Example 4.2.3. According to the United Nations Population Division, the worldwide sex ratio at birth
is 108 boys to 100 i.e., the probability that any birth is a boy is p = 108/(108 + 100) = 0.519. Suppose
that births occur on a maternity ward according to a Poisson process with rate 2 births per hour.

(i) On an 8-hour shift, what is the expectation of the number of female births?

(ii) Find the probability that only girls were born between 2 and 5 p.m.

(iii) Assume that five babies were born on the ward yesterday. Find the probability that two are boys.

(i) Let Nm(t) and Nf (t) be the number of male and female births, respectively, up to time t. Theo-
rem 4.2.1 tells us that {Nm(t) : t ≥ 0} and {Nf (t) : t ≥ 0} are independent Poisson processes with rates
2 · 0.519 and 2 · 0.481, respectively. Therefore, Nf (8) is Poisson with parameter 8 · 2 · 0.481, which is also
its expectation.
(ii) The desired probability is P(Nm(3) = 0, Nf (3) > 0). Since the two processes are independent,

P(Nm(3) = 0, Nf (3) > 0) = P(Nm(3) = 0)P(Nf (3) > 0) = P(Nm(3) = 0)(1− P(Nf (3) = 0)).

(iii) Conditional on there being five births in a given interval, the number of boys in that interval is
Binomial with parameters n = 5 and p = 0.519.

Exercise 4.2.4. Accidents occur at a busy intersection according to a Poisson process at the rate of two
accidents per week. Three out of four accidents involve the use of alcohol.
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(i) What is the probability that three accidents involving alcohol will occur next week?

(ii) What is the probability that at least one accident occurs tomorrow?

(iii) If six accidents occur in February (four weeks), what is the probability that less than half of them
involve alcohol?

4.3 Superposition

Suppose women and men arrive to a shop according to Poisson processes with rates λ1 and λ2, respec-
tively. We can combine the two processes into one by considering all arrivals, regardless of gender. If the
two initial processes are independent, it turns out that the combined process is also a Poisson process,
and its rate is λ1 + λ2. We obtained a new process by superposition, which can be viewed as the inverse
of thinning.

Proposition 4.3.1. Suppose {N1(t) : t ≥ 0}, . . . , {Nk(t) : t ≥ 0} are independent Poisson processes with
rates λ1, . . . , λk, respectively. Then, letting N(t) = N1(t) + · · · + Nk(t), we have that {N(t) : t ≥ 0} is a
Poisson process with rate λ1 + · · ·+ λk.

Proof. We verify that the three properties in Definition 4.0.1 hold:
(i) This follows from the fact that Ni(0) = 0 for each i.
(ii) We have that N(t+ s)−N(s) =

∑k
i=1Ni(t+ s)−Ni(s) is a sum of k independent Poisson random

variables with parameters λ1t, . . . , λkt, which is a Poisson random variable with parameter (λ1+· · ·+λk)t
(for example, by Exercise 3.4.10).
(iii) The superposition process has independent increments because all the initial processes do and they
are in addition independent.

The following result addresses the order of events in independent Poisson processes:

Lemma 4.3.2. Let {N1(t) : t ≥ 0} and {N2(t) : t ≥ 0} be two independent Poisson processes with rates
λ1, λ2, respectively. The probability that n arrivals occur in the first process before m arrivals occur in the
second is

n+m−1∑
k=n

Ç
n+m− 1

k

åÅ
λ1

λ1 + λ2

ãkÅ λ2

λ1 + λ2

ãn+m−1−k
.

Proof. Let us consider a Poisson process with rate λ1 +λ2. We independently decide for each arrival that
it belongs to the first process with probability λ1

λ1+λ2
, or to the second process with probability λ2

λ1+λ2
.

By thinning (Theorem 4.2.1), the obtained processes are independent and have rates λ1 and λ2. The
probability we are interested in is the probability that among the first m+n− 1 arrivals in the combined
process, n or more belong to the first process, and this is exactly the probability in the statement.

Example 4.3.3. A radioactive material emits α-, β-, γ- and δ-particles according to four independent
Poisson processes with rates λα, λβ, λγ and λδ, respectively. A particle counter counts all emitted parti-
cles. Let N(t) be the number of emissions (registrations) during (0, t], for t ≥ 0.

(a) What is the expected duration until a particle is registered?

(B) What is the expected duration until a β-particle is registered?
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(a) By Proposition 4.3.1, {N(t) : t ≥ 0} is a Poisson process with rate λ = λα + λβ + λγ + λδ. The
duration τ until a particle is registered is then an exponential random variable with parameter λ and so
E(τ) = 1/λ.
(b) Since β-particles are emitted according to a Poisson process with rate β independently of the other
Poisson processes, it follows that the desired expectation is 1/λβ.

We have seen in Example 4.0.11 that, for 0 < t < s, P(N(t) = 1|N(s) = 1) = t/s. It turns out that
the following generalization holds: The conditional pmf of N(t) given that N(s) = n is Binomial with
parameters n and p = t/s, as the following result shows.

Lemma 4.3.4. If t < s and 0 ≤ m ≤ n, then

P(N(t) = m|N(s) = n) =

Ç
n

m

åÅ
t

s

ãmÅ
1− t

s

ãn−m
.

Proof. By independent increments,

P(N(t) = m|N(s) = n) =
P(N(t) = m)P(N(s)−N(t) = n−m)

P(N(s) = n)

= e−λt
(λt)m

m!
· e−λ(s−t) (λ(s− t))n−m

(n−m)!
· 1

e−λs
n!

(λs)n

=

Ç
n

m

åÅ
t

s

ãmÅ
1− t

s

ãn−m
.

Example 4.3.5. Trucks and cars on a highway are independent Poisson processes with rate 40 and 100
per hour, respectively. 1/8 of trucks and 1/10 of cars get off on exit A.

(a) What is the probability that exactly six trucks get off on exit A between noon and 1pm?

(b) Given that six trucks got off on A between noon and 1pm, what is the probability that exactly two
got off between 12:20 and 12:40?

(c) If we start watching at noon, what is the probability that four cars exit before two trucks do?

(d) Suppose all trucks have one passenger, whereas 30% of cars have one passenger, 50% have two
and 20% have four. Find the mean number of people getting off on A in one hour.

(a) As we are interested in the trucks getting off on A, we apply thinning. Let N(t) be the number of
trucks getting off on A up to time t. By Theorem 4.2.1, {N(t) : t ≥ 0} is a Poisson process with rate
40 · 1

8 = 5. Therefore,

P(N(1) = 6) = e−5 56

6!
.

(b) The desired probability can be computed using Lemma 4.3.4:

P(N(1/3) = 2|N(1) = 6) =

Ç
6

2

åÅ
1

3

ã2Å
1− 1

3

ã6−2

.

(c) By thinning, cars getting off on A is a Poisson processes with rate 100 · 1
10 . As this is independent of

the Poisson process of trucks getting off on A, we can apply Lemma 4.3.2: the probability that four cars
exit before two trucks is

5∑
k=4

Ç
5

k

åÅ
10

15

ãkÅ 5

15

ã5−k
.
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(d) We associate with each arrival of a car at exit A a random variable Yi taking values 1, 2, 4 with
probabilities 0.3, 0.5, 0.2, respectively. We then have that E(Yi) = (0.3)1 + (0.5)2 + (0.2)4 = 2.1. By
linearity and Theorem 4.1.1, the desired mean is 5 · 1 + 10 · 2.1 = 26.

Exercise 4.3.6. Customers arrive at a store at a rate of 10 per hour. Each is either male or female with
probability 1/2. Suppose that exactly 10 women entered within some hour (say, 10 to 11am). Compute the
probability that exactly 10 men also entered and the probability that at least 20 customers have entered.



Chapter 5

Martingales

Suppose you are at a “fair” casino, placing bets on various games and watching your total wealth rise
and fall randomly. The casino is “fair” if, whenever you play a game there, the expected change in your
total wealth is always 0, no matter what the history of the process has been. A martingale is a stochastic
process that models the time evolution of your total wealth according to these assumptions. In order
to formally define martingales, we first need to review the notion of conditional expectation, as seen in
Sections 1.8 and 3.2 in the case of discrete and continuous random variables, respectively.

For any fixed number y, E(X|Y = y) is also a number. As y varies, so does E(X|Y = y), and we can
therefore view E(X|Y = y) as a function of y. Since y is the experimental value of the random variable
Y , E(X|Y = y) can then be viewed as a function of a random variable, hence a new random variable.
Guided by this, we make the following definition:

Definition 5.0.1. E(X|Y ) is the random variable whose value is E(X|Y = y) when the value taken by
Y is y. In other words, E(X|Y ) is the function Ω→ R mapping the outcome ω to E(X|Y (ω)).

Example 5.0.2. We roll a fair die until we get a 6. Let Y be the total number of rolls and let X be the
number of 1’s we get. We compute E(X|Y = y). If Y = y, then the first y − 1 rolls were not a 6 and
the y-th roll was a 6. Given this event, X is a binomial random variable with parameters n = y − 1 and
p = 1/5. So

E(X|Y = y) = np =
1

5
(y − 1).

This means that E(X|Y ) is the random variable 1
5(Y − 1).

Example 5.0.3. Let X1, X2, . . . , Xn be i.i.d. random variables, where each Xi is Bernoulli with param-
eter p i.e., P(Xi = 1) = p and P(Xi = 0) = 1 − p. Let Y = X1 + X2 + · · · + Xn. We know that Y is a
Binomial random variable with parameters n and p. But what kind of random variable is E(X1|Y )? We
need to compute E(X1|Y = r) for each r ≥ 0. By definition of conditional expectation,

E(X1|Y = r) = 0 · P(X1 = 0|Y = r) + 1 · P(X1 = 1|Y = r).

Moreover,

P(X1 = 1|Y = r) =
P(X1 = 1, Y = r)

P(Y = r)
=

P(X1 = 1, X2 + · · ·+Xn = r − 1)

P(Y = r)

=
P(X1 = 1)P(X2 + · · ·+Xn = r − 1)

P(Y = r)

=
p ·
(n−1
r−1

)
pr−1(1− p)n−r(n

r

)
pr(1− p)n−r

=
r

n
.

This implies that E(X1|Y ) = Y
n .

116
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Exercise 5.0.4. Let X and Y be continuous random variables with joint pdf fX,Y (x, y) = 1
x , for 0 < y ≤

x ≤ 1. Find E(Y |X).

We will be interested in conditioning on more than one random variable Y . To this end, we extend
the notions of conditional pmf and pdf and of conditional expectation as follows:

Definition 5.0.5. Let X and Y1, . . . , Yn be random variables (either all discrete or all continuous) asso-
ciated with the same experiment. The conditional pmf or pdf of X given Y1 = y1, . . . , Yn = yn is the
function

fX|Y1,...,Yn(x|y1, . . . , yn) =
fX,Y1,...,Yn(x, y1, . . . , yn)

fY1,...,Yn(y1, . . . , yn)
,

where the functions on the RHS are joint pmf, if all the random variables are discrete, and joint pdf, if
all the random variables are continuous. If X and Y1, . . . , Yn are all discrete, we let

E(X|Y1 = y1, . . . , Yn = yn) =
∑
x

xfX|Y1,...,Yn(x|y1, . . . , yn).

If X and Y1, . . . , Yn are all continuous, we let

E(X|Y1 = y1, . . . , Yn = yn) =

∫ ∞
−∞

xfX|Y1,...,Yn(x|y1, . . . , yn) dx.

Notice that these definitions all agree with the previous definitions in the case n = 1. We can finally
extend Definition 5.0.1 as follows.

Definition 5.0.6. E(X|Y1, . . . , Yn) is the random variable whose value is E(X|Y1 = y1, . . . , Yn = yn)
when the value taken by Yi is yi for each 1 ≤ i ≤ n.

Notice that we are implicitly assuming that the expectations E(X|Y1 = y1, . . . , Yn = yn) exist i.e.,
they are finite real numbers. We now list some useful properties of this newly defined random variable
E(X|Y1, . . . , Yn).

Theorem 5.0.7. LetX,Z, Y1, . . . , Yn be random variables (either all discrete or all continuous), let a, b ∈ R
and let g : Rn → R. The following hold:

(i) E(a|Y1, . . . , Yn) = a.

(ii) E(aX + bZ|Y1, . . . , Yn) = aE(X|Y1, . . . , Yn) + bE(Z|Y1, . . . , Yn).

(iii) E(X|Y1, . . . , Yn) ≥ 0 if X ≥ 0.

(iv) E(X|Y1, . . . , Yn) = E(X) if X,Y1, . . . , Yn are independent.

(v) E(E(X|Y1, . . . , Yn)) = E(X).

(vi) E(Xg(Y1, . . . , Yn)|Y1, . . . , Yn) = g(Y1, . . . , Yn)E(X|Y1, . . . , Yn).

In particular, by (i), E(g(Y1, . . . , Yn)|Y1, . . . , Yn) = g(Y1, . . . , Yn).

Proof. We suppose that all random variables are discrete. The continuous case is analogous.
(i) We look at the values taken by the random variable E(a|Y1, . . . , Yn) i.e., compute E(a|Y1 =

y1, . . . , Yn = yn). By linearity of expectation, E(a|Y1 = y1, . . . , Yn = yn) = a and so E(a|Y1, . . . , Yn)
is just the constant random variable a.
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(ii) As in (i), we first compute the values E(aX + bZ|Y1 = y1, . . . , Yn = yn) taken by E(aX +
bZ|Y1, . . . , Yn). By linearity of expectation,

E(aX + bZ|Y1 = y1, . . . , Yn = yn) = aE(X|Y1 = y1, . . . , Yn = yn) + bE(Z|Y1 = y1, . . . , Yn = yn)

and so E(aX + bZ|Y1, . . . , Yn) = aE(X|Y1, . . . , Yn) + bE(Z|Y1, . . . , Yn).
(iii) The values taken by E(X|Y1, . . . , Yn) are E(X|Y1 = y1, . . . , Yn = yn). But we know that

E(X|Y1 = y1, . . . , Yn = yn) =
∑
x

xfX|Y1,...,Yn(x|y1, . . . , yn),

where x ranges over the values taken byX. Therefore, ifX is nonnegative, we have that E(X|Y1, . . . , Yn)
is nonnegative as well.

(iv) If X,Y1, . . . , Yn are independent, then their conditional pmf is given by

fX|Y1,...,Yn(x|y1, . . . , yn) =
fX,Y1,...,Yn(x, y1, . . . , yn)

fY1,...,Yn(y1, . . . , yn)

=
fX(x)fY1(y1) · · · fYn(yn)

fY1,...,Yn(y1, . . . , yn)

=
fX(x)fY1,...,Yn(y1, . . . , yn)

fY1,...,Yn(y1, . . . , yn)

= fX(x).

Therefore,

E(X|Y1 = y1, · · · , Yn = yn) =
∑
x

xfX|Y1,...,Yn(x|y1, . . . , yn) =
∑
x

xfX(x) = E(X).

(v) We need to compute the expectation of the random variable E(X|Y1, . . . , Yn). This random
variable is a function of Y1, . . . , Yn taking the value E(X|Y1 = y1, · · · , Yn = yn) when Y1 = y1, . . . , Yn =
yn. We have that,

E(E(X|Y1, . . . , Yn)) =
∑

(y1,...,yn)

E(X|Y1 = y1, . . . , Yn = yn)P(Y1 = y1, . . . , Yn = yn) = E(X),

where the first equality follows from LOTUS and the second equality is the total expectation theorem
(Theorem 1.8.2).

(vi) We first compute E(Xg(Y1, . . . , Yn)|Y1 = y1, . . . , Yn = yn). Given that Y1 = y1, . . . , Yn = yn, the
possible values of Xg(Y1, . . . , Yn) are xg(y1, . . . , yn), where x varies over the range of X. The probability
that Xg(Y1, . . . , Yn) takes value xg(y1, . . . , yn) given that Y1 = y1, . . . , Yn = yn is just P(X = x|Y1 =
y1, . . . , Yn = yn). Therefore, by LOTUS,

E(Xg(Y1, . . . , Yn)|Y1 = y1, . . . , Yn = yn) =
∑
x

xg(y1, . . . , yn)P(X = x|Y1 = y1, . . . , Yn = yn)

= g(y1, . . . , yn)
∑
x

xP(X = x|Y1 = y1, . . . , Yn = yn)

= g(y1, . . . , yn)E(X|Y1 = y1, . . . , Yn = yn).

This shows that E(Xg(Y1, . . . , Yn)|Y1, . . . , Yn) = g(Y1, . . . , Yn)E(X|Y1, . . . , Yn).

We are now ready to define martingales. Given a discrete-time stochastic process {Wk}k≥0, we let
Wm,n to be the portion Wm,Wm+1, . . . ,Wn of the process from time m up to time n.
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Definition 5.0.8. A discrete-time stochastic process {Mn}n≥0 is a martingale if E(|Mn|) <∞ and

E(Mn+1|M0,n) = Mn,

for each n ≥ 0.

We can think of Mn as the fortune we have at time n. The condition E(|Mn|) < ∞ is the technical
condition guaranteeing finiteness of the conditional expectations. The condition E(Mn+1|M0,n) = Mn is
the crucial requirement: it represents “game fairness”. If we are playing a fair game, we expect neither
to win nor to lose money on average. Given the history of our fortunes up to time n, our expected
fortune Mn+1 at time n+ 1 should just be the fortune Mn that we have at time n.

The following generalization of the previous definition is sometimes useful.

Definition 5.0.9. A discrete-time stochastic process {Mn}n≥0 is a martingale with respect to another
process {Wn}n≥0 if E(|Mn|) <∞ and

E(Mn+1|W0,n) = Mn,

for each n ≥ 0.

Example 5.0.10 (Random walk). Let X1, X2, . . . be i.i.d. random variables and let Sn =
∑n

k=1Xk

with S0 = 0. {Sn}n≥0 is a stochastic process called random walk. Notice that, in the special case each
Xi takes values in {1,−1} with P(Xi = 1) = p and P(Xi = −1) = 1− p, we obtain the random walk on
Z of Example 2.0.7. If the random variables Xt have mean 0, then {Sn}n≥0 is a martingale. Indeed,

E(Sn+1|S0,n) = E(Sn+Xn+1|S0,n) = E(Sn|S0,n)+E(Xn+1|S0,n) = Sn+E(Xn+1|S0,n) = Sn+E(Xn+1) = Sn.

In the first equality we used the definition of Sn. In the second, Theorem 5.0.7(ii). In the third, Theo-
rem 5.0.7(vi). In the fourth, we used the fact that the events {Xn+1 = xn+1} and B = {S1 = s1, S2 =
s2, . . . , Sn = sn} are independent (Example 1.9.5) and the observation that this implies

E(Xn+1|S0 = 0, S1 = s1, . . . , Sn = sn) =
∑
x

xfXn+1|B(x) =
∑
x

xfXn+1(x) = E(Xn+1). (5.1)

Exercise 5.0.11. Consider a random walk as above where each Xi is Bernoulli with parameter p. For
m < n, determine E(Sm|Sn).

Example 5.0.12 (Product of independent random variables). Let X0, X1, . . . be i.i.d. random vari-
ables and let Zn =

∏n
k=0Xk. If the random variables Xt have mean 1, then {Zn}n≥0 is a martingale.

Indeed,
E(Zn+1|Z0,n) = E(ZnXn+1|Z0,n) = ZnE(Xn+1|Z0,n) = ZnE(Xn+1) = Zn.

In the first equality we used the definition of Zn. In the second, Theorem 5.0.7(vi). In the third, a
reasoning similar to Equation (5.1).

Example 5.0.13 (Pólya’s urn). Suppose we start at time 2 with one black ball and one white ball in an
urn. At each discrete time, we randomly take out a ball from the urn and we return it to the urn together
with a new ball of the same color. Let Xn denote the number of white balls at time n. Given that Xn = k,
with probability k/n we draw a white ball so that Xn+1 = k + 1, and with probability 1− k/n we draw
a black ball so that Xn+1 = k. Letting Mn = Xn/n be the fraction of white balls at time n, we have that

E(Mn+1|X2,n) = E
Å
Xn+1

n+ 1
|X2,n

ã
= E
Å
Xn+1

n+ 1
|Xn

ã
=

1

n+ 1

Å
(Xn + 1)

Xn

n
+Xn

Å
1− Xn

n

ãã
=
Xn

n
= Mn.

In the second equality we used the fact that Xn+1 depends only on Xn. In the third, Theorem 5.0.7(ii)
and the definition of E(Xn+1|Xn) (details are left as an exercise). Therefore, {Mn}n≥2 is a martingale
with respect to {Xn}n≥2.
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Exercise 5.0.14. Let Xn be defined as in Example 5.0.13. Show that

E
Å
Xn+1

n+ 1
|Xn

ã
=

1

n+ 1

Å
(Xn + 1)

Xn

n
+Xn

Å
1− Xn

n

ãã
.

Example 5.0.15 (Doob’s martingale). Let X0, X1, . . . be an arbitrary sequence of random variables
and let Y be another random variable. Let Mn = E(Y |X0,n), for each n ≥ 0. We claim that {Mn}n≥0 is
a martingale with respect to the process {Xn}n≥0. Indeed,

E(Mn+1|X0,n) = E(E(Y |X0,n+1) | X0,n) = E(E(Y |X0,n, Xn+1) | X0,n) = E(Y |X0,n) = Mn.

In the first equality we used the definition of Mn. In the second, the definition of X0,n. The third equality
is an instructive exercise (Exercise 5.0.16).

Doob’s martingales have the following interpretation. Imagine that you are to receive some future
reward Y . You observe the random variablesX0, X1, . . . sequentially (at time n, you observe the value of
Xn). You do not know the value of the random variable Y , but assume that you know from the beginning
the joint distribution of the random variables, so that you can compute expectations and so on. At time n,
if you had to guess the value of Y , then your best guess would be to consider the conditional expectation
of Y given all the information at your disposal so far, that is, E(Y |X0,n). We showed that the sequence of
guesses forms a martingale. This makes sense. You do not expect tomorrow’s guess to be systematically
higher than today’s: if you did expect this, that would mean that you think today’s guess is too low and
so it would not be your best guess!

Exercise 5.0.16. Let X, Y and W be discrete random variables. Show that E(E(X|Y,W )|Y ) = E(X|Y ).

We now introduce two new processes, called submartingales and supermartingales, which are “better
than fair” and “worse than fair”, respectively.

Definition 5.0.17. A discrete-time stochastic process {Xn}n≥0 is a submartingale with respect to an-
other process {Wn}n≥0 if

E(Xn+1|W0,n) ≥ Xn,

for each n ≥ 0, and a supermartingale with respect to {Wn}n≥0 if

E(Xn+1|W0,n) ≤ Xn,

for each n ≥ 0.

These names go somehow against our intuition. Looking at the definition, if we would like to make
money, we would bet on a submartingale, not on a supermartingale. So why having these names
then? Well, there are two ways to look at the inequalities in the definition: in a submartingale we
have Xn ≤ E(Xn+1|W0,n), whereas in a supermartingale we have Xn ≥ E(Xn+1|W0,n). At each time, a
submartingale is below its future expected value, whereas a supermartingale is above its future expected
value.

Example 5.0.18. Consider again the random walk {Sn}n≥0 in Example 5.0.10. If the random variables
Xt have mean 0, we have seen it is a martingale. If they have positive mean, it is a submartingale, and
if they have negative mean, a supermartingale.

Exercise 5.0.19. Let X1, X2, . . . be independent random variables with E(Xi) = 0 and E(Xi)
2 < ∞,

for each i. For each n ≥ 0, let Mn = M0 + X1 + · · · + Xn and Tn = (Mn)2. Show that {Tn}n≥0 is a
submartingale with respect to {Mn}n≥0.
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5.1 Optional sampling

In this section, we will show an important property of martingales: the “conservation of fairness” prop-
erty or “you can’t beat the system” property, technically known as optional sampling. Let us begin with
the following simple observation which justifies the informal definition of martingale stated at the be-
ginning of the chapter.

Lemma 5.1.1. Let {Mn}n≥0 be a martingale with respect to {Wn}n≥0. Then E(Mn) = E(M0), for all
times n ≥ 0.

Proof. By definition of martingale, we have that E(Mn+1|W0,n) = Mn, for each n ≥ 0. Taking expecta-
tions of both sides and using Theorem 5.0.7(v), we obtain

E(Mn) = E(E(Mn+1|W0,n)) = E(Mn+1),

for each n ≥ 0.

The moral is that I can say “stop” at any predetermined time t, say t = 8, and my winnings will be
“fair”: E(M8) = E(M0).

But what if I say “stop” at a time that is not predetermined but random i.e., that depends on the
observed sample path of the game? Is it still true that E(MT ) = E(M0) if T is a random time? There are
two obvious obstructions to this “conservation of fairness”:

1. I wait an indefinitely long time to say “stop”. Well, if I am able just to keep waiting until I see
something I like, that seems clearly unfair.

Consider, for example, the simple symmetric random walk Sn = X1 + · · ·+Xn on Z. If I say “stop”
at time T = inf{n : Sn = 1}, then clearly

E(ST ) = 1 > 0 = E(S0).

2. I retract moves i.e., I change my mind about something I did in the past. I could use the information
I collected up to time t to go back at some time s < t and claim “I meant to say stop then!”. This
obviously violates fairness: I am supposed to say “stop” using only the information available up to
that time.

For example, consider again the simple symmetric random walk {Sn}n≥0 on Z. Let T ∈ [0, 3] be the
random time at which the random walk takes its maximum value max{Sn : 0 ≤ n ≤ 3}. We have
that ST > 0 with positive probability. Indeed, since S1 = 1 with probability 1/2, P(ST ≥ 1) ≥ 1/2.
Therefore,

E(ST ) > 0 = E(S0).

Notice that these are two distinct obstructions: in 2., the time T to say stop is bounded by 3.
If we want E(MT ) = E(M0) to hold for a random time T , we then have to rule out these two

obstructions. Ruling out arbitrarily long times is done by assuming that the random time T is bounded:
there exists b ∈ R such that T ≤ b holds with probability 1. Ruling out peeks into the future is done by
forcing T to be a stopping time:

Definition 5.1.2. Given a stochastic process {Xn}n≥0, a stopping time T is a discrete random variable
defined on the same probability space as Xn, taking values in {0, 1, 2, . . . }∪{∞}, and such that the event
{T = n} is completely determined by the familiy X0,n i.e., {T = n} can be written in terms of events of
the form {X0 ∈ A0, . . . , Xn ∈ An}.
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Example 5.1.3. Consider a Markov chain {Xn}n≥0. The first-passage time Tj to state j is a stopping
time. Indeed, {Tj = n} = {X1 6= j,X2 6= j, . . . , Xn−1 6= j,Xn = j}.

Once we get rid of the obvious obstructions, we indeed have E(MT ) = E(M0):

Theorem 5.1.4 (Optional sampling theorem). Let {Mn}n≥0 be a martingale with respect to {Wn}n≥0

and let T be a bounded stopping time. Then E(MT ) = E(M0).

In a market setting, the moral is that you can’t make money (in expectation) by buying and selling
an asset whose price is a martingale. More precisely, if you buy the asset at some time and adopt
any strategy at all for deciding when to sell it, then the expected price at the time you sell is the
price you originally paid. In other words, if the market price is a martingale, you cannot make
money in expectation by “timing the market.”

Proof of Theorem 5.1.4. Suppose the stopping time T is bounded by n i.e., T (ω) ≤ n, for all ω ∈ Ω.
Consider the indicator random variable I{T=j} and recall that

I{T=j} =

®
1 if {T = j} occurs;

0 otherwise.

Since MT is the random variable which equals Mj if T = j, we can write

MT =
n∑
j=0

MjI{T=j}.

Therefore,

E(MT |W0,n−1) = E
Å n∑
j=0

MjI{T=j}|W0,n−1

ã
= E(MnI{T=n}|W0,n−1)+

n−1∑
j=0

E(MjI{T=j}|W0,n−1), (5.2)

where in the last equality we used Theorem 5.0.7(ii). But for each j ∈ {0, . . . , n − 1}, MjI{T=j} can
be written as a function of W0,n−1 (as T is a stopping time and {Mn}n≥0 is a martingale) and so Theo-
rem 5.0.7(vi) implies that

E(MjI{T=j}|W0,n−1) = MjI{T=j}. (5.3)

Therefore (5.2) becomes

E(MT |W0,n−1) = E(MnI{T=n}|W0,n−1) +
n−1∑
j=0

MjI{T=j}. (5.4)

Let us now look at E(MnI{T=n}|W0,n−1). Since T ≤ n, the event {T = n} is the same as the event {T >
n−1}. But T is a stopping time and so I{T>n−1} can be written as a function ofW0,n−1. Theorem 5.0.7(vi)
then implies that

E(MnI{T=n}|W0,n−1) = E(MnI{T>n−1}|W0,n−1) = I{T>n−1}E(Mn|W0,n−1). (5.5)
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Since {Mn}n≥0 is a martingale with respect to {Wn}n≥0, we have that E(Mn|W0,n−1) = Mn−1. There-
fore, (5.4) becomes

E(MT |W0,n−1) = E(MnI{T=n}|W0,n−1) +

n−1∑
j=0

MjI{T=j}

= I{T>n−1}Mn−1 +
n−1∑
j=0

MjI{T=j}

= Mn−1

(
I{T>n−1} + I{T=n−1}

)
+

n−2∑
j=0

MjI{T=j}

= I{T>n−2}Mn−1 +
n−2∑
j=0

MjI{T=j}.

We can now condition the random variable E(MT |W0,n−1) on the set of random variables W0,n−2. We
obtain

E(E(MT |W0,n−1)|W0,n−2) = E
Å
I{T>n−2}Mn−1 +

n−2∑
j=0

MjI{T=j}|W0,n−2

ã
= E(I{T>n−2}Mn−1|W0,n−2) +

n−2∑
j=0

E(MjI{T=j}|W0,n−2)

= I{T>n−2}Mn−2 +
n−2∑
j=0

MjI{T=j}

= I{T>n−3}Mn−2 +

n−3∑
j=0

MjI{T=j},

where the third equality follows from (5.3) and (5.5) applied to n − 2 instead of n − 1. On the other
hand, recalling Exercise 5.0.16, we have

E(E(MT |W0,n−1)|W0,n−2) = E(MT |W0,n−2)

and so

E(MT |W0,n−2) = I{T>n−3}Mn−2 +
n−3∑
j=0

MjI{T=j}.

Repeating this argument again (until n− 2 reaches 0), we end up with

E(MT |W0,0) = M0

and so, taking expectations of both sides, E(E(MT |W0,0)) = E(M0). But Theorem 5.0.7(v) implies that
E(E(MT |W0,0)) = E(MT ) and so E(MT ) = E(M0), as desired.

We now give some examples showing how the Optional sampling theorem can be applied and a
standard trick that can be used to deal with unbounded stopping times.

Example 5.1.5. Consider the symmetric simple random walk {Sn}n≥0 on Z with S0 = 0. We have seen
in Example 5.0.10 that it is a martingale, as the mean of each Xt is 0. Let a and b be integers with
a < 0 < b. We will compute the probabilities of reaching b before a and a before b.
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Let Ta = inf{n : Sn = a} and Tb = inf{n : Sn = b}. Ta and Tb are both stopping times. Indeed,
{Tb = n} coincides with the event {S0 < b, S1 < b, . . . , Sn−1 < b, Sn = b}. Similarly for Ta (work out the
details). Moreover, the following holds:

Exercise 5.1.6. If T1 and T2 are stopping times, then T = min{T1, T2} is a stopping time as well.

In particular, T = min{Ta, Tb} is a stopping time. Notice that T is the first time the random walk
hits either a or b. However, it is not necessarily bounded! In order to apply Theorem 5.1.4, we define
Tm = min{T,m}, for eachm. Exercise 5.1.6 implies that Tm is a stopping time and Tm is clearly bounded
(by m). Therefore, by Theorem 5.1.4,

E(STm) = E(S0) = 0,

for each m.
We now show that E(ST ) = 0. Since the symmetric simple random walk is recurrent (Exam-

ple 2.1.16), we have that P(T < ∞) = 1. Moreover, for each ω such that T (ω) < ∞, we have
Tm(ω) = T (ω) for sufficiently large m (we can simply take m such that m ≥ T (ω)). Therefore, for
each ω such that T (ω) < ∞, we have STm(ω) = ST (ω) for sufficiently large m and so STm

a.s.−−→ ST .
Moreover, |STm | ≤ max{|a|, |b|} for each m. We now make use of the following important result which
we already mentioned. One of its many formulations reads as follows:

Theorem 5.1.7 (Dominated convergence theorem). If Xn
a.s.−−→ X and there exists a random variable

Y such that |Xn| ≤ Y for each n and E(Y ) <∞, then E(Xn)→ E(X) as n→∞.

Using the Dominated convergence theorem, we conclude that E(STm) → E(ST ). But since E(STm) = 0
for each m, we must have E(ST ) = 0, as claimed.

Notice now that the random variable ST takes two values: a with probability P(ST = a) and b with
probability P(ST = b). Therefore,

0 = E(ST ) = aP(ST = a) + bP(ST = b) = a(1− P(ST = b)) + bP(ST = b),

from which
P(ST = b) =

−a
b− a

and P(ST = a) =
b

b− a
.

These are the probabilities of reaching b before a and a before b, respectively.

Example 5.1.8. Let us consider again the random walk {Sn}n≥0 and the stopping time T from the
previous example. We will compute E(T ), the expected time until the walk reaches a or b. To do this,
we consider another martingale associated with the random walk, namely Mn = S2

n − n. We first show
it is indeed a martingale. By Theorem 5.0.7(ii) and (i), we have that

E(S2
n+1 − (n+ 1)|S0,n) = E(S2

n+1|S0,n)− E(n+ 1|S0,n) = E(S2
n+1|S0,n)− (n+ 1).

Moreover, since Sn+1 = Sn +Xn+1, we have

E(S2
n+1|S0,n) = E(S2

n +X2
n+1 + 2SnXn+1|S0,n)

= E(S2
n|S0,n) + E(X2

n+1|S0,n) + E(2SnXn+1|S0,n)

= S2
n + E(X2

n+1|S0,n) + 2SnE(Xn+1|S0,n)

= S2
n + E(X2

n+1) + 2SnE(Xn+1)

= S2
n + 1 + 0,
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where in the second equality we used Theorem 5.0.7(ii), in the third, Theorem 5.0.7(vi), in the fourth,
Equation (5.1) and in the fifth the fact that E(Xn+1) = 0 and E(X2

n+1) = 1 · 1
2 + (−1)2 · 1

2 = 1. Therefore,

E(S2
n+1 − (n+ 1)|S0,n) = S2

n+1 + 1− (n+ 1) = S2
n − n,

and so {Mn}n≥0 is indeed a martingale.
As in the previous example, consider the bounded stopping time Tm = min{T,m}. By Theorem 5.1.4

applied to {Mn}n≥0 and Tm, we have that

E(S2
Tm − Tm) = E(MTm) = E(M0) = E(S2

0 − 0) = 0

and so

E(S2
Tm) = E(Tm), (5.6)

for all m. But we have seen that, for each ω such that T (ω) < ∞, Tm(ω) = T (ω) for sufficiently
large m and so S2

Tm

a.s.−−→ S2
T . Applying the Dominated convergence theorem to the sequences {Tm} and

{S2
Tm
}, we then obtain that E(Tm)→ E(T ) and E(S2

Tm
)→ E(S2

T ). By (5.6) and uniqueness of limits, we
conclude that E(T ) = E(S2

T ). Recall now from the previous example that

P(ST = b) =
−a
b− a

and P(ST = a) =
b

b− a

and so
E(T ) = E(S2

T ) = a2 · b

b− a
+ b2 · −a

b− a
= −ab = |a|b.

This tells us, for example, that the expected time until a random walk wanders 100 units in either
direction away from its starting position is 1002.

We can apply the results in Examples 5.1.5 and 5.1.8 to the gambler’s ruin problem:

Example 5.1.9 (Gambler’s ruin one more time). Recall that a man wants to buy a car at a cost of N
units of money. He starts with k units, for some 0 < k < N and tries to win the remainder by tossing a
fair coin repeatedly: If heads comes up, then he wins one unit, if tails comes up, he loses one unit. He
plays the game repeatedly until one of two events occurs: either he runs out of money and is bankrupted
or he wins enough to buy the car.

We can interpret the gamble as a simple random walk on Z starting at 0, where the probability of
moving in either direction is 1/2. The probability of being bankrupted is exactly the probability that the
random walk reaches −k before reaching N − k. The computation in Example 5.1.5 shows that this
probability is

N − k
N

= 1− k

N
,

in accordance with our old computation (see Example 1.3.6). We can also compute the expected dura-
tion of the gamble. By Example 5.1.8, it is k(N − k). The moral is that:

In a fair gamble, you expect to play for the product of the amount you are willing to lose times
the amount you want to win.



CHAPTER 5. MARTINGALES 126

5.2 Option pricing

A derivative security is a financial contract whose value is derived from the value of another underlying
security, such as a stock or a bond. For example, a derivative security based on an underlying stock
would pay off various amounts at various times depending on the behavior of the price of the stock.
In this section, we give an idea of the theory predicting the prices of such derivative securities and its
connection to martingales. We consider discrete-time models.

Let St be the stock price at time t. The stock price process is the discrete-time stochastic process
{St}t≥0. We assume that at an agreed-upon future time n, the derivative security pays an amount X
that is some function X = g(S0,n) of the stock price history up to that time. Let us give an example of a
derivative security: a call option.

Example 5.2.1. A call option on a given underlying stock is the right to buy a share of the stock at a
certain fixed price c (the strike price) at a certain fixed time n in the future (the maturity date). If I
buy a call option from you, I am paying you some money in return for the right to force you to sell me
a share of the stock, if I want it, at the strike price on the maturity date. If Sn > c, then the buyer of
the option will exercise his right at time n, buying the stock for c and selling it for Sn, gaining a net of
Sn − c. If Sn ≤ c, then it is not profitable to buy the stock at price c, so the option is not exercised, and
the gain at time n is 0. Here we are obviously assuming rational behavior. In summary,

X = g(S0,n) =

®
Sn − c if Sn > c;

0 otherwise.

The natural problem of pricing derivative securities arises: How do we assure a “fair” price? This can
be done assuming the no-arbitrage principle, one of the cornerstones of modern finance. An arbitrage is
a transaction that makes money without risk, that is, with no chance of losing money. Such transactions
should not exist. Here is the rough motivation. Suppose that the price of A is so low that some clever
set of transactions involving buying A and perhaps selling something else is guaranteed to make a
riskless profit. Many eager arbitrage seekers would try to perform these transactions many times. The
resulting increased demand for A would cause its price to increase, thereby destroying the arbitrage
opportunity. The no-arbitrage principle can be summarized as “There is no such thing as a free lunch”,
an adage popularized by Milton Friedman. A consequence of the no-arbitrage principle is the following:
If there are two portfolios that give the same sets of payoffs at the same times (for example, two different
combinations of securities that produce the same rewards under all circumstances), then those portfolios
must have the same price.

Given the no-arbitrage assumption, the “fair” price of a derivative security can be computed based on
the following result: The derivative security is actually redundant, in the sense that there is a portfolio
involving just the stock and a bond that produces exactly the same payoffs as the derivative security
itself. Assuming this result, and since we are given the prices of the stock and the bond, we can then
compute the price of the reproducing portfolio which, by the no-arbitrage principle, must be the same
as the price of the derivative security. This is exemplified in the following.

Example 5.2.2. Consider the Mickey Mouse model of the market with only one period and two states
corresponding to the stock price rising or falling. At time 0 the stock price is 1 and at time 1 the stock
price is either s⊕ or s	, where s	 < 1 < s⊕. Suppose we also have a bond in our portfolio, for simplicity
with interest rate zero: investing $1 at time 0 returns exactly $1 at time 1. We can think of it this way.
Buying b shares of the bond corresponds to lending out $b for one period: we lose $b at time 0 but then
gain back $b at time 1. If b < 0 this corresponds to borrowing $b for one period. In other words, assuming
an interest rate of zero means that we can lend or borrow money with no cost.
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The redundant derivative security has payoffs that are a function of s⊕ and s	. Suppose that it pays
x⊕ if the stock price goes up to s⊕ and x	 if the stock price goes down to s	. We want to determine the
no-arbitrage price of the derivative security.

stock bond derivative security

1

s⊕

s	

x⊕

x	

1

1

1

?

We assume the stock and bond can be traded in continuous amounts, so that one can buy 2.718
shares of stock or sell 3.14 bonds, for example. Let a and b denote the number of stock and bond shares
in the portfolio, respectively. Since the payoffs at time 1 from such a portfolio are as⊕ + b if the stock
goes up and as	+ b if the stock goes down, the requirement that the portfolio reproduces the payoffs of
the redundant derivative security consists of the equations

as⊕ + b = x⊕ and as	 + b = x	.

Solving the system, we obtain

a =
x⊕ − x	
s⊕ − s	

and b =
x	s⊕ − x⊕s	
s⊕ − s	

.

Therefore, the price π that we pay for this portfolio at time 0 is

π = a+ b = x⊕

Å
1− s	
s⊕ − s	

ã
+ x	

Å
s⊕ − 1

s⊕ − s	

ã
.

If the price of the redundant derivative security were anything other than π, we would have two
investments (the redundant security and the reproducing portfolio) that have different prices but ex-
actly the same payoffs, thus violating the no-arbitrage principle. Therefore, the price for the redundant
derivative security implied by the no-arbitrage assumption is π.

There is a nice interpretation of π that makes it easy to remember and points toward the connection
with martingales. Letting

p =
1− s	
s⊕ − s	

,

we found that

π = x⊕p+ x	(1− p). (5.7)

If, for some reason, p is the probability that the stock price rises, then the price π would simply be the
expected value of the payoff of the redundant derivative security. But the no-arbitrage argument we
used to determine π is independent of the probability of the stock price rising! Hence the magic of
option pricing: the “probability” p has nothing to do with the probability of the stock price rising. It
does, however, have an interesting and useful interpretation: the value p = 1−s	

s⊕−s	 is the probability that
makes the stock price a martingale. Indeed, if p′ is the probability of the stock price rising, the expected
value of the stock price at time 1 is s⊕p′ + s	(1 − p′). For the stock price to be a martingale, this last
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expression must be the same as the expected value of the stock price at 0, which is 1. This happens
precisely when

p′ =
1− s	
s⊕ − s	

.

The equality (5.7) says that the price of the redundant derivative security is its expected pay-
off, where the expectation is taken under the probability measure that makes the stock price a
martingale.

We now allow more than one period in our model of the market. Imagine that the stock price process
can be described as a bifurcating tree, where for each possible history of the stock price up to time t,
there are just two possible values for the price at time t + 1 (see Figure 5.1). We describe a path, or
history, in the stock price tree up to time t by a sequence of binary random variables W1,W2, . . . ,Wt,
where Wk = ⊕ means that the price took the larger of the two possible values at time k, and Wk = 	
means that the price took the smaller of the two possible values at time k. We assume that the initial
stock price s0 is known. The stock price St at time t is then determined by the history W1,t and so we
can view it as a function of W1,t. To emphasize this, we will write St = St(W1,t).

Example 5.2.3. Suppose that, in each period, the stock price either double or half. For example, if
the stock price starts out at s0 = 8 and goes up in the first 3 periods, then at time 3 the price is
S3(⊕,⊕,⊕) = 64. The price after 3 “down” periods would be S3(	,	,	) = 1. The possible paths
of the stock price for the first 3 periods are depicted in Figure 5.1.

This model might appear very artificial, as we would not expect a stock to either double or half each
period. But it becomes somewhat realistic when there are many very short periods and the stock price
can gain or lose some very small percentage each period.

8

16

32
64

16

4

2
1

8

4

Figure 5.1: Stock price tree.

We have not yet specified the probabilities of the various stock price paths, namely the probabilities
of the 8 paths (	,	,	), (	,	,⊕), . . . , (⊕,⊕,⊕). For example, we might assume that all 8 paths are
equally likely, which is equivalent to assuming a probability measure P under which the random variables
W1,W2,W3 are independent with P(Wi = ⊕) = P(Wi = 	) = 1/2, as depicted in Figure 5.2. In fact,
similarly to the one-period case, it will turn out that these probabilities do not matter.

Given the stock price St = St(W1,t) at time t, the stock price St+1 has the two possible values
St+1(W1,t,⊕) or St+1(W1,t,	). Let us assume that the current stock price is always strictly between the
two possible prices at the next period i.e.,

St+1(W1,t,	) < St(W1,t) < St+1(W1,t,⊕). (5.8)
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Figure 5.2

We now want to price a derivative security X whose value at time n is a function of W1,n. For example,
for the stock price process in Example 5.2.3, a call option with strike price 10 at time 3 would have the
payoffs depicted in Figure 5.3.
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Figure 5.3: Payoffs of call option with strike price 10.

As in the one-period case, the key for pricing the derivative security is to show that it is redundant:
its payoffs can be duplicated using the stock and a bond. In order to do that, we need the following
notion. A trading strategy consists of a specification of the number of stock shares that we hold at each
time period. Let Ht denote the number of shares held at time t. Think of it this way: at time t we
buy Ht shares to hold over the interval from t to t + 1. This choice is based on the history of the stock
price process up to time t and cannot depend on future information. The payoff of this strategy in the
first period is H0(S1 − S0), the number of shares held at time 0 times the amount the stock price rises.
Accumulating such gains over the first n periods, the gain at time n from the strategy H0, H1, . . . is

(H • S)n = H0(S1 − S0) +H1(S2 − S1) + · · ·+Hn−1(Sn − Sn−1). (5.9)

We can think of it the following way. At time 0, we buy H0 shares, which costs H0S0. In fact, let us
imagine that we borrow H0S0 at time 0 to finance the stock purchase. So in fact we neither gain nor
lose money at time 0, since we gain H0S0 by borrowing it and then spend that same amount of money
to buy the stock. At time 1, we sell our H0 shares (remember that H0 is the number of shares we hold
just for the first period), gaining H0S1, and we pay off the money we borrowed, namely H0S0. So the
strategy H0, H1, . . . produces payoffs H0(S1−S0) at time 1 and costs nothing to perform. The reasoning
can then be repeated.

Remark 5.2.4. As a side remark, the process H •S is an example of a discrete-time stochastic integral.
Loosely speaking, an integral is a sum of products, or a limit of sums of products. For example, the so-
called Riemann-Stieltjes integral

∫ b
a f dg is defined to be a limit of sums of the form

∑k−1
i=0 f(xi)(g(xi+1)−
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g(xi)) as k → ∞, where a = x0 < x1 < · · · < xk = b and maxi<k(xi+1 − xi) → 0 as k → ∞. Notice
that the Riemann integral

∫ b
a f(x) dx you are familiar with is the special case of the Riemann-Stieltjes

integral where g is the identity function g(x) = x.
∫
f dg is then a sum of products of values of f with

changes in values of g. Analogously, (5.9) is a sensible way to define an integral
∫
H dS for discrete-time

processes.

It turns out that in the type of bifurcating tree models of stock prices we are considering, the payoffs
given by any derivative security X with maturity date n may be reproduced precisely by the sum of a
constant and some trading strategy:

X = x0 + (H • S)n, (5.10)

for some x0 ∈ R and trading strategyH. Loosely speaking, we can reproduce the payoffs of the derivative
security X by trading the stock. We can obtain (5.10) from the following martingale representation
result:

Theorem 5.2.5 (Martingale representation). Let {St}t≥0 be a martingale with respect to the probability
measure Q. For any other martingale {Mt}t≥0 with respect to Q, there is a trading strategy H such that

Mt = M0 + (H • S)t.

Proof of (5.10) using Theorem 5.2.5. It is enough to define a martingale {Mt}t≥0 such that Mn = X.
Consider the Doob’s martingale Mt = EQ(X|W1,t) (with the notation EQ(·) we stress the fact that expec-
tations are taken with respect to the probability measure Q). Notice that Mn = X, as we have assumed
that X is a function of W1,n. Moreover, M0 = EQ(X). Thus, applying the martingale representation
theorem to {Mt}t≥0, there is a trading strategy H such that

X = EQ(X) + (H • S)n,

as desired.

A consequence of (5.10) is the following:

Lemma 5.2.6. Suppose that St+1(W1,t,	) < St(W1,t) < St+1(W1,t,⊕) holds for each t and that each
path in the tree has positive probability. If the derivative security X satisfies (5.10), then the no-arbitrage
price of X is x0.

The lemma reduces the problem of pricing X to that of finding x0 in the representation (5.10). A
stochastic process, such as the price process for the stock, takes various possible paths with various prob-
abilities. Different probability measures will allocate probability among paths differently. For discrete
processes of the type we have been discussing, some paths will have positive probability and some will
have zero probability.

Definition 5.2.7. Two probability measures P and Q for a process are equivalent if they agree on which
sets of paths have zero probability and which sets of paths have positive probability.

In the case of Example 5.2.3 with the probability measure P depicted in Figure 5.2, any equivalent
probability measure Q will simply reassign probabilities among the set of paths already taken by P.

Definition 5.2.8. Given a process and a probability measure P, a probability measure Q is an equiv-
alent martingale measure if Q is equivalent to P and the process is a martingale under the measure
Q.
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A martingale measure Q makes the identification of the desired price x0 in (5.10) easy. Indeed, since
the martingale property gives EQ(St+1 − St|W1,t) = 0, we have

EQ
(
Ht(St+1 − St)

)
= EQ

(
EQ(Ht(St+1 − St)|W1,t)

)
= EQ

(
HtEQ(St+1 − St|W1,t)

)
= 0,

where the first equality follows from Theorem 5.0.7(v) and the second from Theorem 5.0.7(vi). There-
fore,

EQ((H • S)n) = EQ(H0(S1 − S0)) + · · ·+ EQ(Hn−1(Sn − Sn−1)) = 0.

and taking the expectation under Q of both sides of (5.10), we obtain

x0 = EQ(X),

in accordance with the one-period case. To summarize:

If the stock price is governed by a probability measure P on the paths in a bifurcating tree, letting
Q be a probability measure equivalent to P under which the stock price is a martingale, the no-
arbitrage price of the derivative security X is EQ(X).

Example 5.2.9. The measure P in Example 5.2.3 is not a martingale measure. Indeed, if the current
price is 4, the price under P at the next period will be either 2 or 8 with equal probability, giving an
expected value of 5 6= 4. On the other hand, the equivalent measure Q such that Q(Wk = ⊕) = 1/3 and
Q(Wk = 	) = 2/3 is a martingale measure (check this!).
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Figure 5.4: The measure P on the left and the measure Q on the right.

The no-arbitrage price of the call option with strike price 10 is then
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=
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5.3 Ballot theorem

In this section we consider a famous result obtained by Bertrand in 1887 and called Ballot theorem.
Suppose that two candidates A and B run for an election. Candidate A obtains a votes and candidate
B obtains b < a votes. The votes are counted in a random order chosen uniformly at random from all
permutations on the a + b votes. What is the probability that A is always ahead in the count? We show
that this probability is

a− b
a+ b

.
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We provide two proofs, one using martingales and the Optional sampling theorem and one using an
elementary technique called the reflection principle. This technique will also allow us to obtain several
interesting results for random walks.

We first prove the Ballot theorem using martingales. Let n = a+ b be the total number of votes and
let Sk be the random number of votes by which A is leading after k votes are counted (note that Sk
might be negative). Clearly, Sn = a− b. We build a finite martingale {Xk}0≤k≤n−1 as follows:

Xk =
Sn−k
n− k

.

Let us verify it is indeed a martingale. Consider E(Xk|X0,k−1) and observe that conditioning on X0,k−1 is
equivalent to conditioning on Sn, . . . , Sn−k+1, which in turn is equivalent to conditioning on the values
of the count when counting the last k − 1 votes. Let ak be the number of votes for A after the first k
votes are counted and, similarly, let bk be the number of votes for B after the first k votes are counted.
We have that

an−k+1 =
an−k+1 + bn−k+1 + (an−k+1 − bn−k+1)

2
=
n− k + 1 + Sn−k+1

2

and

bn−k+1 =
an−k+1 + bn−k+1 − (an−k+1 − bn−k+1)

2
=
n− k + 1− Sn−k+1

2
.

Now, the (n− k+ 1)th vote is a random vote among the first n− k+ 1 votes. Moreover, Sn−k is equal to
Sn−k+1 + 1 if the (n− k + 1)th vote was for B, and equal to Sn−k+1 − 1 if the (n− k + 1)th vote was for
A. Therefore, for k ≥ 1, we obtain

E(Sn−k|Sn−k+1) = (Sn−k+1 + 1)
n− k + 1− Sn−k+1

2(n− k + 1)
+ (Sn−k+1 − 1)

n− k + 1 + Sn−k+1

2(n− k + 1)

= Sn−k+1 ·
n− k

n− k + 1
.

But then

E(Xk|X0,k−1) = E
Å
Sn−k
n− k

|Sn, . . . , Sn−k+1

ã
=

1

n− k
E(Sn−k|Sn−k+1) =

Sn−k+1

n− k + 1
= Xk−1,

showing that X0, . . . , Xn−1 is indeed a martingale.
Let now T be the minimum k such that Xk = 0, if such k exists, and T = n − 1 otherwise. In this

way we obtain a bounded stopping time and so, by the Optional sampling theorem,

E(XT ) = E(X0) =
E(Sn)

n
=
a− b
a+ b

.

We now consider two cases:

1. A leads throughout the count. In this case, Sn−k > 0 for each k ∈ {0, . . . , n− 1} (and so all Xk are
positive), T = n− 1 and XT = Xn−1 = S1 = 1.

2. A does not lead throughout the count. In this case we claim that Xk = 0 for some k < n − 1.
Indeed, since A has more votes at the end, if B ever leads then there must be some intermediate
point k such that Sn−k = 0. Taking the minimum such k, we have that Xk = 0, from which
T = k < n− 1 and XT = 0.
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But then
a− b
a+ b

= E(XT ) = 1 · P(case 1 occurs) + 0 · P(case 2 occurs),

from which we obtain that the probability that case 1 occurs i.e., that A leads throughout the count, is
indeed a−b

a+b .
We now provide another proof of the Ballot theorem, this time with a combinatorial flavor. It is based

on the reflection principle, an elementary but useful result in the context of random walks. Consider
the following random walk on Z with starting point a: we have a sequence X1, X2, . . . of i.i.d. random
variables taking value 1 with probability p and−1 with probability q = 1−p and we let Sn = a+

∑n
k=1Xk.

We keep a record of the random walk through its path {(n, Sn) : n ≥ 0} as depicted in Figure 5.5.

Sn

n

Sn

n

a

−a

k

(n, b)

a

Figure 5.5: The path describing the random walk (above) and the bijection between the paths from (0, a) to (n, b) containing
some point (k, 0) and the paths from (0,−a) to (n, b) (below).

Suppose we know that Sn = b. The random walk may or may not have visited the origin between
times 0 and n. Let Nn(a, b) be the number of possible paths from (0, a) to (n, b) and let N0

n(a, b) be the
number of such paths which contain some point (k, 0) on the x-axis.

Theorem 5.3.1 (Reflection principle). If a, b > 0, then N0
n(a, b) = Nn(−a, b)

Proof. We provide a bijection between the family of paths from (0,−a) to (n, b) and the family of paths
from (0, a) to (n, b) containing some point (k, 0) on the x-axis. Consider a path from (0,−a) to (n, b).
It intersects the x-axis for the first time at some point (k, 0). We reflect the subpath with x-coordinates
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between 0 and k in the x-axis to obtain a path from (0, a) to (n, b) intersecting the x-axis. This operation
provides the desired bijection.

We can now count the number of paths from (0, a) to (n, b). We use the same idea as in Exam-
ple 2.1.16.

Lemma 5.3.2.

Nn(a, b) =

Ç
n

n+b−a
2

å
Proof. Consider a path from (0, a) to (n, b) and let α and β be the number of steps up and down,
respectively, in this path. Clearly, α + β = n and α − β = b− a, from which α = n+b−a

2 . The number of
such paths is the number of ways of picking α steps up from the n steps made i.e.,

Nn(a, b) =

Ç
n

α

å
=

Ç
n

n+b−a
2

å
.

Corollary 5.3.3. If b > 0, then the number of paths from (0, 0) to (n, b) which do not revisit the x-axis is
b
n ·Nn(0, b).

Proof. Since b > 0, the first step of all such paths is (1, 1) and so the number of such paths is

Nn−1(1, b)−N0
n−1(1, b) = Nn−1(1, b)−Nn−1(−1, b)

by the Reflection principle. Using Lemma 5.3.2, we then obtain

Nn−1(1, b)−Nn−1(−1, b) =

Ç
n− 1
n+b

2 − 1

å
−
Ç
n− 1
n+b

2

å
=
b

n

Ç
n
n+b

2

å
=
b

n
·Nn(0, b).

Back to our ballot problem. The probability that A is always ahead in the count is simply the pro-
portion of paths from (0, 0) to (a + b, a − b) which do not revisit the x-axis. By Corollary 5.3.3, this
proportion is a−b

a+b .
We will now see some other interesting consequences of the reflection principle. Suppose that S0 = 0.

What is the probability that the walk does not revisit its starting point 0 in the first n steps?

Proposition 5.3.4. If S0 = 0, then

P(S1 6= 0, . . . , Sn 6= 0) =
E(|Sn|)
n

.

Proof. By countable additivity,

P(S1 6= 0, . . . , Sn 6= 0) =
∑
b∈Z

P(S1 6= 0, . . . , Sn 6= 0, Sn = b).

Let us compute P(S1 6= 0, . . . , Sn 6= 0, Sn = b) when b > 0. The event in question occurs if and only if
the path of the random walk does not visit the x-axis in the time interval [1, n]. By Corollary 5.3.3, the
number of such paths is b

n ·Nn(0, b) and each such path has (n+ b)/2 steps up and (n− b)/2 steps down.
Therefore,

P(S1 6= 0, . . . , Sn 6= 0, Sn = b) =
b

n
·Nn(0, b) · p(n+b)/2q(n−b)/2 =

b

n
· P(Sn = b).
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When b < 0, a reflection in the x-axis reduces the problem to the previous case and we obtain

P(S1 6= 0, . . . , Sn 6= 0, Sn = b) =
−b
n
·Nn(0,−b) · p(n+b)/2q(n−b)/2 =

|b|
n
· P(Sn = b).

Therefore,

P(S1 6= 0, . . . , Sn 6= 0) =
∑
b∈Z

|b|
n
· P(Sn = b) =

E(|Sn|)
n

,

where the last equality follows from LOTUS.

Another feature of interest is the maximum value attained by the random walk. Let Mn = max{Si : 0 ≤
i ≤ n} be the maximum value up to time n. Clearly, P(Mn ≥ r, Sn = b) = P(Sn = b) if b ≥ r. Therefore,
the nontrivial case is when b < r:

Proposition 5.3.5. Suppose that S0 = 0. Then, for any r ≥ 1 and b < r,

P(Mn ≥ r, Sn = b) =

Å
q

p

ãr−b
P(Sn = 2r − b).

Proof. Let N r
n(0, b) be the number of paths from (0, 0) to (n, b) which contain some point at height r i.e.,

a point of the form (i, r) for some 0 < i < n. For any such path π, let (iπ, r) be the earliest such point.
We reflect the subpath traversed in the time interval [iπ, n] in the line y = r. We thus obtain a path π′

from (0, 0) to (n, 2r − b) (see Figure 5.6). Any such path π′ is obtained from a unique path π and so
N r
n(0, b) = Nn(0, 2r − b). Therefore,

P(Mn ≥ r, Sn = b) = N r
n(0, b)p(n+b)/2q(n−b)/2

=

Å
q

p

ãr−b
Nn(0, 2r − b)p(n+2r−b)/2q(n−2r+b)/2

=

Å
q

p

ãr−b
P(Sn = 2r − b).

Sn

n

r

(n, b)

iπ

2r

Figure 5.6: Bijection between paths from (0, 0) to (n, b) containing some point at height r and paths from (0, 0) to (n, 2r− b).

Proposition 5.3.5 allows us to obtain an expression for P(Mn ≥ r) when r ≥ 1. Indeed, by countable
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additivity,

P(Mn ≥ r) =
∑
b∈Z

P(Mn ≥ r, Sn = b) =
∞∑
b=r

P(Mn ≥ r, Sn = b) +
r−1∑
b=−∞

P(Mn ≥ r, Sn = b)

=
∞∑
b=r

P(Sn = b) +
r−1∑
b=−∞

Å
q

p

ãr−b
P(Sn = 2r − b)

= P(Sn = r) +

∞∑
c=r+1

P(Sn = c) +

∞∑
c=r+1

Å
q

p

ãc−r
P(Sn = c)

= P(Sn = r) +
∞∑

c=r+1

Å
1 +

Å
q

p

ãc−rã
P(Sn = c),

which in the symmetric case reduces to

P(Mn ≥ r) = P(Sn = r) + 2

∞∑
c=r+1

P(Sn = c) = P(Sn = r) + 2P(Sn ≥ r + 1).

With the aid of Proposition 5.3.5 we can also compute first-passage probabilities for a random walk
starting in 0:

Corollary 5.3.6. For each n ≥ 1,

f
(n)
0,b =

|b|
n
· P(Sn = b).

Proof. We suppose that b > 0, the case b < 0 being similar. Observe that

f
(n)
0,b = P(Mn−1 = Sn−1 = b− 1, Sn = b)

= p · P(Mn−1 = Sn−1 = b− 1)

= p · (P(Mn−1 ≥ b− 1, Sn−1 = b− 1)− P(Mn−1 ≥ b, Sn−1 = b− 1))

= p · (P(Sn−1 = b− 1)− P(Mn−1 ≥ b, Sn−1 = b− 1))

= p ·
Å
P(Sn−1 = b− 1)− q

p
· P(Sn−1 = b+ 1)

ã
=
b

n
· P(Sn = b),

where the first equality follows from the definition of f (n)
0,b , the second follows from the independence of

the Xi’s, the third follows from finite additivity, the fifth follows from Proposition 5.3.5 and the last is
left as an exercise.

5.4 Martingale convergence theorem

In this section we establish the almost sure convergence of martingales under some mild conditions. This
goes under the name of Martingale convergence theorem. Recall the elementary analysis fact that every
convergent sequence of real numbers is bounded, but a bounded sequence is not necessarily convergent.
It turns out that martingales are much better behaved:

Theorem 5.4.1 (Martingale convergence theorem). If {Sn}n≥1 is a martingale such that E(S2
n) < M

for some M ∈ R and all n ≥ 1, then there exists a random variable S such that Sn
a.s.−−→ S.



CHAPTER 5. MARTINGALES 137

Before turning to the proof, we need some auxiliary results. By definition, if {Sn}n≥1 is a martingale
with respect to {Xn}n≥1, then E(Sm+1|X1,m) = Sm. The following generalized property holds:

Lemma 5.4.2. Let {Sn}n≥1 be a martingale with respect to {Xn}n≥1. Then E(Sm+n|X1,m) = Sm for each
n,m ≥ 1.

Proof. We have seen in Exercise 5.0.16 that E(E(X|Y,W )|Y ) = E(X|Y ). It is not difficult to see that
the same holds if we replace Y and W with families of random variables. We then obtain,

E(Sm+n|X1,m) = E(E(Sm+n|X1,m, Xm+1,m+n−1)|X1,m) = E(Sm+n−1|X1,m)

and iterating gives the desired equality.

We now establish a technical but useful result, which is an analogue of Markov’s and Chebyshev’s
inequalities. Recall that Markov’s inequality asserts that, for any random variable X and ε > 0,

P(|X| ≥ ε) ≤ E(|X|)
ε

.

Martingales satisfy a similar, but much more powerful inequality, which bounds the maximum of the
process.

Theorem 5.4.3 (Doob-Kolmogorov inequality). Let {Sn}n≥1 be a martingale with respect to {Xn}n≥1.
Then, for each ε > 0,

P( max
1≤i≤n

|Si| ≥ ε) ≤
E(S2

n)

ε2
.

Proof. Let An = {ω : |Si(ω)| < ε for each i ≤ n} and let Bn = An−1 ∩ {ω : |Sn(ω)| ≥ ε}. In other words,
An is the event that none of the first n random variables Si’s deviates from 0 by at least ε, whereas Bn is
the event that the first such deviation occurs at the n-th random variable Sn. Clearly, we can write Ω as
the following union of pariwise disjoint events:

Ω = An ∪
Å n⋃
i=1

Bi

ã
.

But then we have a partition of Ω and so, by Corollary 1.8.3,

E(S2
n) = E(S2

n|An) · P(An) +
n∑
i=1

E(S2
n|Bi) · P(Bi) = E(S2

nIAn) +
n∑
i=1

E(S2
nIBi) ≥

n∑
i=1

E(S2
nIBi).

For each term in the sum, we have

E(S2
nIBi) = E((Sn + Si − Si)2IBi) = E((Sn − Si)2IBi) + 2E((Sn − Si)SiIBi) + E(S2

i IBi).

Clearly, E((Sn + Si − Si)2IBi) ≥ 0. Consider now E(S2
i IBi). If Bi occurs, then |Si| ≥ ε and so

E(S2
i IBi) = E(S2

i |Bi) · P(Bi) ≥ ε2 · P(Bi).

It remains to consider the middle term:

E((Sn − Si)SiIBi) = E(E((Sn − Si)SiIBi)|X1,i) = E(SiIBiE(Sn − Si|X1,i)) = E(SiIBi(Si − Si)) = 0,
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where the first equality follows from Theorem 5.0.7(v), the second follows from Theorem 5.0.7(vi) and
the third follows from Lemma 5.4.2. Combining the lower bounds obtained so far, E(S2

nIBi) ≥ ε2 ·P(Bi),
from which

E(S2
n) ≥

n∑
i=1

ε2 · P(Bi) ≥ ε2 · P( max
1≤i≤n

|Si| ≥ ε),

where the last inequality follows from monotonicity and the fact that {ω : max1≤i≤n |Si(ω)| ≥ ε} is
contained in

⋃n
i=1Bi. Indeed, if the maximum deviates by at least ε, then at least one of the Si’s must

deviate by at least ε.

We can finally prove the Martingale convergence theorem. The proof is split into four parts:

1. {E(S2
n)} is a non-decreasing real sequence.

2. Find an expression for the event of non-convergence (the non-convergence set) and evaluate its
probability.

3. For fixed m, let Yn = Sm+n − Sm. Then {Yn}n≥1 is a martingale with respect to itself.

4. The probability of the non-convergence set is zero.

Some comments are in order. Recall that if we want to show that a sequence of real numbers converges
but we do not have a plausible candidate for the limit, it is convenient to show that the sequence is
Cauchy convergent. Indeed, a sequence is convergent if and only if it is Cauchy convergent. Let us recall
the definition. A sequence of real numbers {xn} is Cauchy convergent if, for each ε > 0, there exists N
such that |xm − xn| < ε, for each m,n ≥ N . In the case of sequences of random variables, this notion
translates as follows:

Definition 5.4.4 (Cauchy convergence for sequences of random variables). A sequence of random
variables {Xn} is Cauchy convergent if, for each ε > 0, there exists N such that

P({ω : |Xm(ω)−Xn(ω)| < ε, for each m,n ≥ N}) = 1.

Recall now that Xn
a.s.−−→ X for some X means that there exists a random variable X such that

P({ω : Xn(ω)→ X(ω)}) = 1.

Therefore, if we manage to show that {Xn} is Cauchy convergent in the sense of Definition 5.4.4, we
would then obtain that Xn

a.s.−−→ X for some X. This is indeed what will be done for our martingale {Sn}.
We define the convergence set C (which is the complement of the non-convergence set mentioned in 2.)
as C = {ω : {Sn(ω)} is Cauchy convergent} and we will show that P(Cc) = 0, thus implying P(C) = 1.

Proof of Theorem 5.4.1. We follow the four steps highlighted above:
1.

E(S2
m+n) = E((Sm+n + Sm − Sm)2) = E(S2

m) + 2E(Sm(Sm+n − Sm)) + E((Sm+n − Sm)2).

Let us look at the middle term:

E(Sm(Sm+n−Sm)) = E(E(Sm(Sm+n−Sm)|S1,m)) = E(SmE(Sm+n−Sm|S1,m)) = E(Sm(Sm−Sm)) = 0,

where the first equality follows from Theorem 5.0.7(v), the second follows from Theorem 5.0.7(vi) and
the third follows from linearity and Lemma 5.4.2. But then

E(S2
m+n) = E(S2

m) + E((Sm+n − Sm)2) ≥ E(S2
m) (5.11)
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and so {E(S2
n)} is a nondecreasing real sequence.

2.

C = {ω : {Sn(ω)} is Cauchy convergent}
= {ω : for each ε > 0, there exists an m such that |Sm+i(ω)− Sm+j(ω)| < ε, for each i, j ≥ 1}.

On the other hand, by the triangle inequality,

|Sm+i − Sm+j | = |(Sm+i − Sm) + (Sm − Sm+j)| ≤ |Sm+i − Sm|+ |Sm+j − Sm|

and so the last even above can be rewritten as

C = {ω : for each ε > 0, there exists an m such that |Sm+i(ω)− Sm(ω)| < ε for each i ≥ 1}

=
⋂
ε>0

⋃
m

{ω : |Sm+i(ω)− Sm(ω)| < ε for each i ≥ 1}.

Notice that the intersection above is over all positive ε ∈ Q, hence countable. Here we are using the fact
that between any two real numbers there is a rational number. Alternatively, if the reader feels more
comfortable, we could simply take ε of the form 1/n. We now pass to the complement

Cc =
⋃
ε>0

⋂
m

{ω : |Sm+i(ω)− Sm(ω)| ≥ ε for some i ≥ 1} =
⋃
ε>0

⋂
m

Am(ε),

where Am(ε) = {ω : |Sm+i(ω)− Sm(ω)| ≥ ε for some i ≥ 1}. Clearly, if ε ≥ ε′, then Am(ε) ⊆ Am(ε′) and
so, by continuity of probability,

P(Cc) = P
Å⋃
ε>0

⋂
m

Am(ε)

ã
= lim

ε→0
P
Å⋂

m

Am(ε)

ã
≤ lim

ε→0
lim
m→∞

P(Am(ε)). (5.12)

3. For fixed m, let Yn = Sm+n − Sm. We show that {Yn}n≥1 is a martingale with respect to itself:

E(Yn+1|Y1,n) = E(Sm+n+1 − Sm|Sm,m+n)

= E(E(Sm+n+1 − Sm|S1,m−1, Sm,n+m)|Sm,m+n)

= E(E(Sm+n+1|S1,n+m)− E(Sm|S1,n+m)|Sm,m+n)

= E(Sm+n − Sm|Sm,m+n)

= Sm+n − Sm = Yn,

where the first equality follows from the definition of {Yn}, the second follows from the fact that
E(E(X|Y,W )|Y ) = E(X|Y ) (see Example 5.0.15 and the comment in the proof of Lemma 5.4.2), the
third follows from linearity, the forth follows from the fact that {Sn} is a martingale and from Theo-
rem 5.0.7(vi) and the fifth follows again from Theorem 5.0.7(vi).
4. We apply the Doob-Kolmogorov inequality to {Yn}. For each ε > 0,

P( max
1≤i≤n

|Sm+i − Sm| ≥ ε) ≤
E((Sm+n − Sm)2)

ε2
.

Therefore,

P(|Sm+i − Sm| ≥ ε for some 1 ≤ i ≤ n) ≤ P( max
1≤i≤n

|Sm+i − Sm| ≥ ε)

≤ E((Sm+n − Sm)2)

ε2

=
E(S2

m+n)− E(S2
m)

ε2

≤ supm{E(S2
m)} − E(S2

m)

ε2
,
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where the first inequality follows from monotonicity and the equality follows from Equation (5.11).
Letting n→∞ in the above, we obtain

P(Am(ε)) ≤ supm{E(S2
m)} − E(S2

m)

ε2
.

But in 1. we have shown that {E(S2
m)} is a nondecreasing real sequence which is upper bounded by

assumption and hence convergent to its sup. This implies that, for fixed ε, as m → ∞, we have that
P(Am(ε))→ 0. But then, by Equation (5.12), P(Cc) = 0, as claimed. This concludes the proof.

Example 5.4.5 (Pólya’s urn again). Recall Example 5.0.13. We start at time 2 with one black ball and
one white ball in an urn. At each discrete time, we randomly take out a ball from the urn and we return
it to the urn together with a new ball of the same color. Letting Xn denote the number of white balls at
time n and Mn = Xn/n the fraction of white balls at time n, we verified that {Mn}n≥2 is a martingale
with respect to {Xn}n≥2. Since Mn = Xn/n ≤ 1, we have that M2

n ≤ 1 and so E(M2
n) ≤ 1. Therefore,

the martingale convergence theorem implies that {Mn} converges almost surely. This means that the
proportion of white balls does not fluctuate between 0 and 1 infinitely often. It can be proved that {Mn}
converges almost surely to a uniform random variable on [0, 1].

Example 5.4.6 (Random harmonic series). It is known from analysis that the harmonic series
∑∞

j=1 1/j

diverges while the alternating harmonic series
∑∞

j=1(−1)j+1/j converges. What about choosing pluses
and minuses at random? Let X1, X2, . . . be i.i.d random variables with P(Xi = 1) = P(Xi = −1) = 1/2.
Let M0 = 0 and for n > 0,

Mn =
n∑
j=1

1

j
Xj .

Since E(Mn) = 0, the same computation as in Example 5.0.10 shows that {Mn} is a martingale. More-
over,

E(M2
n) = var(Mn) =

n∑
j=1

var

Å
1

j
Xj

ã
=

n∑
j=1

1

j2
≤
∞∑
j=1

1

j2
.

Since the latter series converges, the second moments are bounded and so {Mn} converges almost surely.

5.5 Martingale concentration inequalities

We conclude our chapter on martingales with a brief overview of concentration inequalities. The inter-
ested reader should refer to [5] for a more in-depth coverage.

It is often useful to bound the probability that a random variable deviates from some other value,
usually its mean. Recall that Chebyshev’s inequality tells us that

P(|X − E(X)| ≥ t) ≤ var(X)

t2
.

Therefore, if t � var(X), the probability of deviating by more than t from E(X) is small. However, it
is often desirable that the probability of large deviations is very small i.e., that X is concentrated around
its mean. Concentration inequalities are an essential tool in the probabilistic analysis of algorithms
and in the study of randomized algorithms. Our interest will be in concentration inequalities in which
the deviation probabilities decay exponentially. The most basic such inequality is the Azuma-Hoeffding
inequality for bounded martingales:



CHAPTER 5. MARTINGALES 141

Theorem 5.5.1 (Azuma-Hoeffding inequality). Let {Yn}n≥0 be a martingale with respect to {Xn}n≥0

such that, for each i ≥ 1,
|Yi − Yi−1| ≤ di,

for some real numbers di. Then, for all n ≥ 0 and t > 0,

P(|Yn − Y0| ≥ t) ≤ 2e−2t2/(
∑n
i=1 d

2
i ).

Example 5.5.2 (Divergence of random walk). Consider the simple symmetric random walk {Sn}n≥0

on Z with starting point S0. Sn denotes the position at time n. What is the likelihood of the random
walk diverging far from its starting point? Notice that |Si − Si−1| ≤ 1 for each i ≥ 1 and so, by the
Azuma-Hoeffding inequality,

P(|Sn − S0| ≥ t) ≤ 2e−2t2/n.

This implies that the random walk, in the first n steps, is likely to stay within an interval of radius
√
n

around the starting point. Indeed,

P(|Sn − S0| ≥
√
n) ≤ 2e−2 < 0.28.

Example 5.5.3 (Pattern matching). In many scenarios, including examining DNA structure, a goal is
to find “interesting” patterns in a sequence of characters, where “interesting” refers to strings that occur
more often than one would expect if the characters were generated randomly. This notion of “interesting”
is reasonable if the number of occurrences of a string is concentrated around its mean in the random
model. We now obtain a concentration result for this setting.

Let X = (X1, . . . , Xn) be a sequence of characters chosen independently and uniformly at random
from an alphabet Σ, where s = |Σ|. Let B = (b1, . . . , bk) be a fixed string of k characters from Σ and let
F be the number of occurrences of the fixed string B in the random string X. What is E(F )? Let Ai be
the event that B occurs in X starting at position i. By linearity of expectation,

E(F ) =
n−k+1∑
i=1

E(IAi) =
n−k+1∑
i=1

1 · P(Ai) =
n−k+1∑
i=1

Å
1

s

ãk
= (n+ k − 1)

Å
1

s

ãk
.

We now use a Doob-type martingale and the Azuma-Hoeffding inequality to show that if k is relatively
small with respect to n, then the number of occurrences of B in X is highly concentrated around its
mean.

Let Z0 = E(F ) and, for 1 ≤ i ≤ n, let Zi = E(F |X1,i). A computation similar to that in Exam-
ple 5.0.15 shows that Z0, . . . , Zn is a martingale with respect to X1, . . . , Xn. Zi defines the expected
number of occurrences of the pattern in the entire sequence, given only the first i characters. Clearly,
Zn = F . Notice that, when a new character Xi+1 is exposed, it adds at most k new occurrences of B
in expectation (from the leftmost one with bk = Xi+1 to the rightmost one with b1 = Xi+1). Hence
|Zi+1 − Zi| ≤ k. Therefore, by the Azuma-Hoeffding inequality,

P(|F − E(F )| ≥ t) ≤ 2e−2t2/(nk2).

The most common way Azuma-Hoeffding is applied is by considering Lipschitz functions:

Definition 5.5.4 (Lipschitz property). A function f(x1, . . . , xn) of n variables satisfies the Lipschitz
property (or the bounded differences condition) with constants di if

|f(x)− f(x′)| ≤ di,

whenever the n-dimensional vectors x and x′ differ in just the i-th coordinate.



CHAPTER 5. MARTINGALES 142

In words, the Lipschitz property states that changing the value of any single coordinate can change
the value of f by at most a constant. The following result is obtained by applying the Azuma-Hoeffding
inequality to Doob’s martingales in a way similar to Example 5.5.3.

Corollary 5.5.5 (Method of bounded differences). If f satisfies the Lipschitz property with constants di
and X1, . . . , Xn are independent random variables, then

P(|f(X1, . . . , Xn)− E(f(X1, . . . , Xn)| ≥ t) ≤ 2e−2t2/(
∑n
i=1 d

2
i ).

It is important to remark that the independence requirement in Corollary 5.5.5 is necessary.

Example 5.5.6 (Bin packing problem). We are given n items of sizes in the interval [0, 1] and are
required to pack them into the fewest number of unit-capacity bins as possible. This problem is compu-
tationally hard: it is a so-called NP-complete problem i.e., a problem which does not admit an “efficient”
algorithm unless P = NP.

In the stochastic version of this problem, the item sizes are independent random variables X1, . . . , Xn

in the interval [0, 1]. Let Bn = Bn(X1, . . . , Xn) denote the optimum value i.e., the minimum number
of bins that suffice. Since the Lipschitz condition holds for Bn with constants 1 (why?), Corollary 5.5.5
gives the following concentration result:

P(|Bn − E(Bn)| ≥ t) ≤ 2e−2t2/n.

Notice that in this case it is not easy to compute E(Bn). Nevertheless, even if we can’t compute the
mean, we can still obtain a concentration bound!

Example 5.5.7 (Balls in bins). m balls are thrown independently at random into n bins (m ≥ n) and
we are interested in the number of empty bins. For each i ∈ {1, . . . , n}, let Ai be the event that the i-th
bin is empty. Then the random variable Z =

∑n
i=1 IAi counts the number of empty bins. Clearly,

E(Z) = n · P(Ai) = n

Å
1− 1

n

ãm
.

For each k ∈ {1, . . . ,m}, let Xk be the random variable taking values in {1, . . . , n} and indicating the
bin in which ball k lands. We can consider Z as a function Z(X1, . . . , Xm). We claim that this function
satisfies the Lipschitz property with constants 1. Indeed, if the i-th ball is moved from one bin to another,
keeping all other balls where they are, then the number of empty bins can at most either go up by 1 or
down by 1. Therefore,

P(|Z − E(Z)| ≥ t) ≤ 2e−2t2/n.
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