Math 373-578

Name ___

Homework Assignment 3 March 1, 2019

- 1. Let p be an odd prime. Compute $1^p + 2^p + \cdots + (p-2) + (p-1)^p$ modulo p.
- 2. Consider the (symmetric) affine cipher with encryption function defined by

 $e_k(m) \equiv k_1 \cdot m + k_2 \pmod{p}.$

Recall that $\mathcal{M} = \mathcal{C} = (\mathbb{Z}/p\mathbb{Z})^*$, for a prime p, and \mathcal{K} consists of pair of elements (k_1, k_2) of $(\mathbb{Z}/p\mathbb{Z})^*$.

- (a) Compute the decryption function d_k .
- (b) Suppose that p = 19 and that your key is $(k_1, k_2) = (5, 7)$. Decrypt the ciphertext 17.
- 3. Consider the Diffie-Hellman key exchange with public parameters p = 71 and g = 11.
 - (a) Compute the order of g modulo p.
 - (b) Suppose Bob chooses b = 18. Compute the value he sends to Alice.
 - (c) Suppose Alice sends to Bob the value 14. Compute the secret key generated by the Diffie-Hellman algorithm.
- 4. Alice and Bob use the ElGamal public key cryptosystem with parameters p = 8237 and g = 3. Suppose that Alice sends to Bob the value A = 5616. Bob did not attend last class and so he uses the same key k for all his plaintexts m_1, m_2, \ldots You happen to know that he is extremely predictable and always sends "Hi" as a first message, encoded as $m_1 = 190$. The first and second ciphertexts he sends are $(c_1, c_2) = (7830, 4537)$ and $(c'_1, c'_2) = (7830, 1647)$, respectively. Compute the second plaintext m_2 .
- 5. (challenge) Show that there is no positive integer n such that $\phi(n) = 14$.